

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

E1 - EPREUVE SCIENTIFIQUE ET TECHNIQUE

SOUS EPREUVE B1 - MATHEMATIQUES ET SCIENCES PHYSIQUES

Durée: 2 heures - Coefficient: 2

L'emploi des calculatrices est autorisé.

Circulaire n° 99-186 du 16 novembre 1999 publiée au BO n° 42 du 25 novembre 1999. L'échange de machines entre candidats est interdit durant la durée de l'épreuve.

Documents remis au candidat: 5

- Texte du sujet

: feuilles 1/5 - 2/5 - 3/5

- Document à rendre

: feuille 4/5

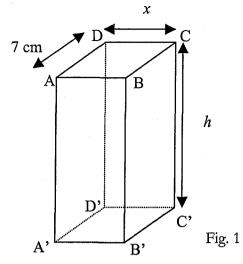
- Formulaire

: feuille 5/5

La feuille 4/5 devra être encartée dans une copie double anonymee:

<u>NOTA</u>: Dès la distribution du sujet, assurez-vous que l'exemplaire qui vous a été remis est conforme à la liste ci-dessus; s'il est incomplet, demandez un nouvel exemplaire au responsable de salle.

On désire fabriquer des pièces en inox qui ont la forme de parallélépipèdes rectangles de capacité d'un litre.



Première Partie: Calculs géométriques (3 points)

Une pièce a les dimensions suivantes : x = 9.4 cm et h = 15.2 cm.

- 1.1 Calculer le volume, en cm³, du parallélépipède rectangle. Arrondir le résultat à l'unité.
- 1.2 En déduire la capacité, en litre, du parallélépipède rectangle.
- 2 On note O le centre de symétrie de la face supérieure du parallélépipède rectangle. On rappelle que O est l'intersection des diagonales du rectangle ABCD.
 - 2.1 Calculer la longueur du segment [AC]. Arrondir le résultat à 10⁻².
 - 2.2 En déduire la longueur OA. Arrondir le résultat à 10⁻².
- 3 Calculer l'aire de la surface d'inox nécessaire pour fabriquer le parallélépipède rectangle.

<u>Deuxième partie</u>: Etude du problème (3,5 points)

L'objectif est de fabriquer des parallélépipèdes rectangles de capacité d'un litre avec une surface d'inox minimale sachant que l'un des cotés mesure 7 cm.

Un patron du parallélépipède est représenté ci-contre.

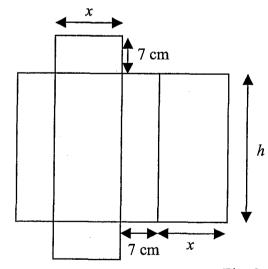


Fig. 2

- 1 A l'aide de la fig. 2 montrer que l'aire totale S du parallélépipède, en fonction de x et h, s'écrit S = 14x + 14h + 2xh.
- 2.1 Exprimer le volume V en fonction de x et h.
- 2.2 A l'aide de la fig. 1, sachant que le volume est de 1000 cm³, déduire que $h = \frac{1000}{7x}$.
- 3- Montrer que l'aire totale peut s'écrire en fonction de x par $S = 14 x + \frac{2000}{x} + \frac{2000}{7}$

On note f la fonction définie sur [5; 30] par $f(x) = 14 x + \frac{2000}{x} + \frac{2000}{7}$.

- 1.1 Déterminer f'(x) où f' est la dérivée de la fonction f.
- 1.2 Résoudre dans l'intervalle [5 ; 30] l'équation $14 \frac{2000}{x^2} = 0$.

 Donner la valeur exacte de la solution puis l'arrondir à 10^{-2} près.
- 1.3 En déduire le signe de la dérivée sur [5; 30].
- 2 Compléter le tableau de variation de la fonction sur l'annexe.
- 3 On a alors f (x) = f₁ (x) + f₂ (x).
 Les représentations graphiques de f₁ et f₂ notées respectivement C₁ et C₂, sont données en annexe.
 A partir de C₁ et C₂, tracer sur l'annexe la représentation graphique de f.

Quatrième partie: Exploitation des résultats.(2,5 points)

- 1.1 Déterminer la valeur de x pour laquelle l'aire de la plaque d'inox utilisée est minimale. (Justifier la réponse)
- 1.2 En déduire l'aire minimale de la plaque d'inox utilisée.
- 1.3 Calculer la hauteur h correspondante. Arrondir le résultat à 10^{-2} .

SCIENCES PHYSIQUES – 5 points

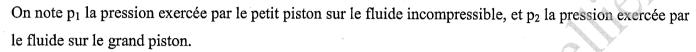
Exercice 1: Transmission de pression (2 points)

Pour compacter les emballages, on utilise la presse hydraulique schématisée ci-contre.

Le petit piston a pour diamètre d = 10 cm.

Le grand piston a pour diamètre D = 40 cm.

La force exercée sur le petit piston est $F_I = 6000 \text{ N}$.



On rappelle l'expression de la pression exercée par une force pressante F sur une surface d'aire S : $p = \frac{F}{S}$.

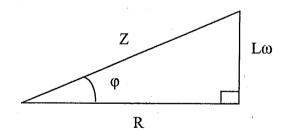
- 1.1 Calculer l'aire S_1 du disque de diamètre d du petit piston. Donner le résultat en m^2 , arrondi à 10^{-6} .
- 1.2 Calculer, en pascals, la pression p₁. Arrondir le résultat à la dizaine.
- 2 Donner la relation liant p_1 et p_2 .
- 3 On donne $p_2 = 763940$ Pa. Calculer F_2 . Arrondir à l'unité.

Exercice 2: Electricité (3 points)

Une bobine d'inductance L=0,2 H est placée en série avec une résistance $R=100 \Omega$. L'ensemble est alimenté sous une tension alternative monophasée sinusoïdale de valeur efficace 230 V et de fréquence 50 Hz.

On donne le triangle des impédances

On rappelle U = Z. I.



- 1 Calculer la pulsation ω. Arrondir à l'unité.
- 2 Sachant que ω = 314 rad/s, calculer l'impédance Z du circuit.
- 3 Calculer l'intensité dans le circuit. Arrondir à 10⁻¹.
- 4 Calculer le facteur de puissance du circuit. Arrondir le résultat à 10⁻².

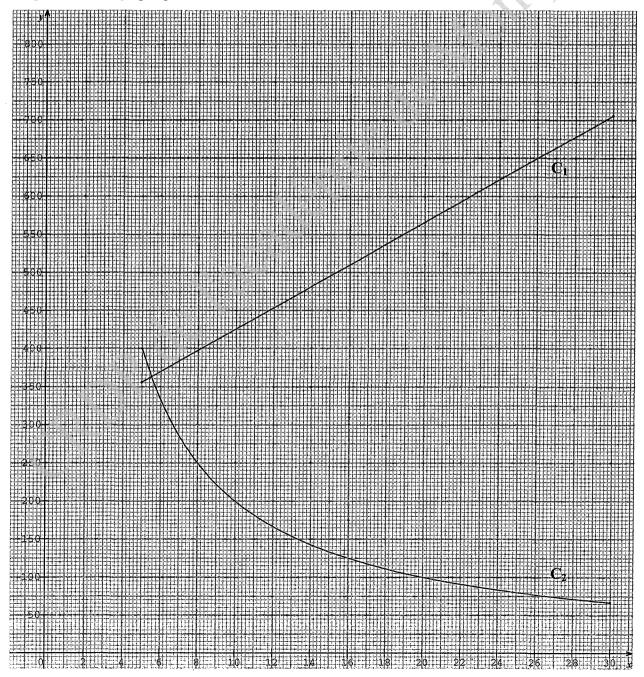
Première partie.

2.1 - Tableau de variation:

Les trois valeurs de f(x) du tableau de variation seront arrondies à l'unité.

x	5	$\sqrt{\frac{1000}{7}}$	30
signe de $f'(x)$			A
Variation de f			SHOT

3 - Représentation graphique



FORMULAIRE BACCALAUREAT PROFESSIONNEL Artisanat, Bâtiment, Maintenance - Productique

Fonction <i>f</i>	<u>Dérivée f '</u>		
f(x)	f'(x)		
ax + b	a		
x^2	2x		
x^3	$3x^2$		
. 1	_ 1		
$\frac{-}{x}$	$\frac{1}{x^2}$		
u(x) + v(x)	u'(x) + v'(x)		
a u(x)	a u'(x)		

Logarithme népérien : ln $\ln\left(a^{n}\right)=n\ln a$ $\ln{(ab)} = \ln{a} + \ln{b}$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Equation du second degré $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang 1 : u_1 et raison q

Terme de rang $n: u_n = u_1.q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Trigonométrie

$$\frac{1}{\sin(a+b) = \sin a \cos b + \sin b \cos a}$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos 2a = 2\cos^2 a - 1$$

$$= 1 - 2 \sin^2 a$$

 $\sin 2a = 2 \sin a \cos a$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

Moyenne
$$\overline{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Ecart type $\sigma = \sqrt{V}$

Relations métriques dans le triangle rectangle

$$AB^2 + AC^2 = BC^2$$

$$\sin \widehat{B} = \frac{AC}{BC}; \cos \widehat{B} = \frac{AB}{BC}; \tan \widehat{B} = \frac{AC}{AB}$$

Résolution de triangle
$$\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2R$$

R: rayon du cercle circonscrit

$$a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$$

Aires dans le plan

Triangle: $\frac{1}{2}bc\sin \hat{A}$

Trapèze: $\frac{1}{2}(B+b)h$

Disque : πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h: Volume Bh

Sphère de rayon R:

Volume : $\frac{4}{3}\pi R^3$ Aire: $4\pi R^2$

Cône de révolution ou pyramide de base B et de

hauteur h: Volume $\frac{1}{3}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$\vec{v} \cdot \vec{v}' = xx' + yy'$$

$$\|\vec{v}\| = \sqrt{x^2 + y^2}$$

$$|\vec{v} \cdot \vec{v}| = xx' + yy' + zz'$$

$$||\vec{v}|| = \sqrt{x^2 + y^2 + z^2}$$

Si $\vec{v} \neq \vec{0}$ et $\vec{v}' \neq \vec{0}$:

$$\vec{v}.\vec{v}' = ||\vec{v}|| \times ||\vec{v}'|| \cos(\vec{v}, \vec{v}')$$

 $\vec{v} \cdot \vec{v}' = 0$ si et seulement si $\vec{v} \perp \vec{v}'$