SCECEO SERVICES CULTURE ÉDITIONS RESSOURCES POUR L'ÉDUCATION NATIONALE

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

EXAMEN: BACCALAUREAT PROF	Session: 2009	
SPECIALITE: COMPTABILITE	0906-COMSTC	
Épreuve Scientifique et Technique	Coefficient: 1	
Sous - épreuve E1C : Mathématiques	:	Unité 13

Ce sujet comporte 6 pages numérotées de 1 à 6.
Assurez-vous que cet exemplaire est complet.
S'il est incomplet, demandez un autre exemplaire au chef de salle.

- SUJET -

Matériel autorisé: toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante. Le prêt entre les candidats est interdit.

LE SUJET COMPREND DEUX PROBLEMES INDEPENDANTS

PARTIES	BAREME INDICATIF
PROBLEME I	10 points
PROBLEME II	10 points
Total	20 points

ATTENTION

- Les documents à compléter et à rendre ne sont fournis qu'en un seul exemplaire.
- Aucun exemplaire supplémentaire ne sera remis aux candidats pendant le déroulement des épreuves.

AVERTISSEMENT

Si le texte du sujet, de ses questions ou de ses annexes vous conduit à formuler une ou plusieurs hypothèses, il vous est demandé de la (ou les) mentionner **explicitement** dans votre copie.

PROBLEME I (10 points)

Dans une entreprise spécialisée, le coût de production d'une série limitée dépend du **nombre entier** n d'articles fabriqués.

Pour une production inférieure ou égale à 15 articles, le coût de production s'exprime en euro par la relation :

$$C(n) = n^3 - 16.5 n^2 + 30 n + 450$$

- 1. Calculer le coût de production pour :
 - 1.1. Deux articles produits.
 - 1.2. Quinze articles produits.
- 2. On modélise le coût de production C par la fonction f définie sur l'intervalle [0; 15] par :

$$f(x) = x^3 - 16.5 x^2 + 30 x + 450$$

2.1. On note f' la fonction dérivée de la fonction f. Calculer f'(x).

On admet que f'(x) peut s'écrire sous la forme f'(x) = 3 ($x^2 - 11$ x + 10).

- **2.2.** Résoudre l'équation $x^2 11x + 10 = 0$.
- **2.3.** En déduire le signe de f'(x) et compléter sur l'annexe 1 le tableau de variation de la fonction f.
- **2.4**. Compléter le tableau de valeurs de la fonction f sur l'annexe 1.
- 2.5. En utilisant le repère de l'annexe 1, compléter la représentation graphique de la fonction f.
- 3. Exploitation:
 - 3.1. Le cahier des charges de l'entreprise impose un coût de production inférieur à 250 €. Déterminer graphiquement le nombre d'articles à produire pour respecter cette condition (laisser apparents les traits utiles à la lecture).
 - 3.2. Pour combien d'articles produits le coût de production est-il minimal?
 - **3.3.** En déduire le coût de production minimal.

CRDP de MONTPELLIER
RÉSERVÉ AU SERVICE

PROBLEME II (10 points)

Les frais de production nécessitent un emprunt de 56 000 €. Son remboursement s'effectue par mensualités constantes, sur quatre ans au taux annuel de 5,4 %.

- 1. Calculer le taux mensuel proportionnel.
- 2. Calculer le montant d'une mensualité.
- 3. En déduire le coût total du crédit.
- 4. Compléter, en annexe 2, les trois premières lignes du tableau d'amortissement.
- 5. On admet que les amortissements forment une suite géométrique de premier terme 1 047,81.
 - **5.1.** Préciser la raison (arrondir à 10⁻⁴) et le premier terme de cette suite.
 - **5.2.** Calculer la somme des amortissements sur quatre ans. Arrondir le résultat à l'unité. Á quoi correspond cette somme ?
- 6. Une étude comptable indique que la société peut se permettre de rembourser une mensualité de 1 000 €.

On souhaite alors déterminer la nouvelle durée de remboursement.

6.1. Montrer que la durée de remboursement n, en mois, vérifie l'équation :

$$1.0045^{-n} = 0.748$$

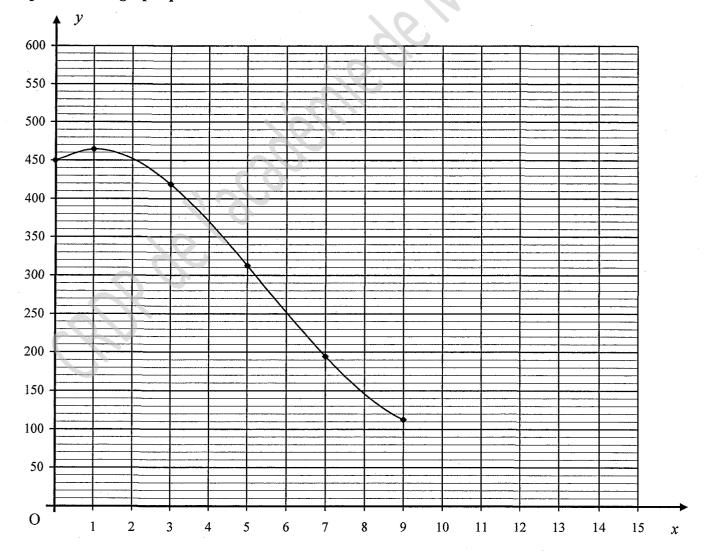
- 6.2. Résoudre cette équation. Arrondir le résultat à l'unité.
- 6.3. En déduire la nouvelle durée de remboursement en années et mois.

CRDP de MONTPELLIER

RÉSERVÉ AU SERVICE

Annexe 1 (à rendre avec la copie)

PROBLEME I


Tableau de variations

x	0	•••	•••	15
Signe de $f'(x)$		344 45-44		
Sens de variation de f				

Tableau de valeurs

x	0	1	3	5	7	9	10	11	12	14	15
f(x)	450	464,5	418,5	312,5	194,5	112,5					

Représentation graphique

Annexe 2 (à rendre avec la copie)

PROBLEME II

Tableau d'amortissement.

	Capital restant dû (en €)	Intérêt (en €)	Amortissement (en €)	Mensualité (en €)
1 ^{er} mois	56 000		1 047,81	1911
2 ^{ème} mois			~0	6///
3 ^{ème} mois			1000	1 299,81

FORMULAIRE DE MATHÉMATIQUES BACCALAUREAT PROFESSIONNEL SECTEUR TERTIAIRE

(Arrêté du 9 mai 1995 – BO spécial n°11 du 15 juin 1995)

Fonction f	<u>Dérivée</u> f
f(x)	f'(x)
ax + b	a
x^2	2x
x^3	$3x^2$
1	_1_
$\frac{\overline{x}}{x}$	x^2
u(x)+v(x)	u'(x)+v'(x)
a.u(x)	a.u'(x)

Équation du second degré $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac$$

Si $\Delta > 0$, deux solutions :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

Si $\Delta < 0$, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison n

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes:

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1: u_1$ et raison q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

Moyenne
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Écart type $\sigma = \sqrt{V}$

Valeur acquise par une suite d'annuités constantes

 V_n : valeur acquise au moment du dernier versement

a: versement constant

t: taux par période

n: nombre de versements

$$V_n = a \frac{(1+t)^n - 1}{t}$$

Valeur actuelle d'une suite d'annuités constantes

 $V_{\rm 0}\,$: valeur actuelle une période avant le premier versement

a: versement constant

t: taux par période

n : nombre de versements

$$V_0 = a \frac{1 - (1 + t)^{-n}}{t}$$

Logarithme népérien : ln

(uniquement pour les sections ayant l'alinéa 3 du II)

$$\ln(ab) = \ln a + \ln b$$

$$\ln(a^n) = n \ln a$$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

CRDP de MONTPELLIER

RÉSERVÉ AU SERVICE