

Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

BREVET DE TECHNICIEN

COLLABORATEUR D'ARCHITECTE

ÉPREUVE : SCIENCES PHYSIQUES

Durée: 2 heures

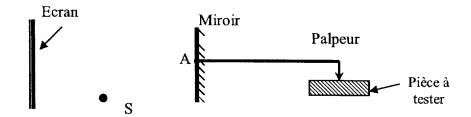
Coefficient: 2

La calculatrice conforme à la circulaire N°99-186 du 16-11-99 est autorisée.

La clarté des raisonnements et la qualité de la rédaction interviendront dans l'appréciation des copies.

IMPORTANT

Ce sujet comporte 6 pages.


Les documents réponses, pages 4, 5 et 6 sont à remettre avec la copie.

EQUIPEMENT DE LABORATOIRE

L'aménagement d'un laboratoire destiné à contrôler la planéité de pièces usinées doit être amélioré. Pour des raisons de confort et d'économie, une ventilation et un éclairage basse tension sont installés.

A. Etude du système de contrôle de planéité.

Ce système utilise la réflexion d'un rayon lumineux sur un miroir M solidaire d'un palpeur P. Le schéma de principe du système est représenté ci-dessous :

I. Principe de la mesure.

Un rayon incident issu de la source lumineuse S (source laser) est réfléchi sur le miroir au point A. Le rayon réfléchi vient frapper un écran gradué E.

Un défaut sur la surface de la pièce à tester entraîne une rotation du miroir autour d'un axe perpendiculaire au plan du schéma et passant par A.

1. Réglage préliminaire.

Représenter sur la figure 1 du document-réponse D₁, le rayon incident issu de la source S et le rayon réfléchi frappant l'écran E. Le point d'impact du rayon réfléchi sur l'écran est l'origine O des mesures.

2. Détection d'un défaut de planéité.

En présence d'un défaut, le palpeur P se déplace verticalement d'une distance d.

Représenter sur la figure 2 du document-réponse D₁ le rayon incident issu de S frappant le miroir au point A et le rayon réfléchi correspondant. Le rayon réfléchi atteint l'écran au point M.

3. Intérêt du système.

Le schéma du système n'est pas à l'échelle.

Pour un déplacement d du palpeur égal à 0,05 mm, on mesure un déplacement OM de 3,18 mm. La grandeur mesurée OM est directement proportionnelle à la grandeur d.

Calculer le coefficient de proportionnalité k et donner son unité.

BT Collaborateur d'Architecte	SUJET	Session 2009
Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE: CASC9		Page 1/7

II. Mesures.

Pour plus de lisibilité des graduations, l'écran est équipé d'une loupe assimilée à une lentille L mince convergente de distance focale $f_1=2,0~{\rm cm}$.

- 1. On observe à l'aide de la loupe une graduation de 0,01 mm représentée sur la figure 3 du document-réponse D_2 page 6, par la flèche AB.
 - 1.1. Construire sur cette figure l'image A'B' de l'objet AB.
 - 1.2. Préciser la nature, la taille, le sens et la position de cette image.

2. Réglage.

L'œil est au repos si l'image observée se forme à l'infini.

- 2.1. A quelle distance de l'écran faut-il mettre la loupe pour éviter la fatigue oculaire ?
- 2.2. Justifier la réponse à l'aide d'un schéma sur la figure 4 du document réponse D₂.

B. Installation électrique.

L'installation électrique du laboratoire est alimentée par un réseau triphasé 230 V/400 V; 50 Hz.

I. Réseau de distribution.

- 1. Donner la valeur efficace V des tensions simples.
- 2. Flécher ces tensions sur le schéma de la figure 5 du document-réponse D₃ page 7.
- 3. Indiquer sur la figure 5, le branchement du voltmètre nécessaire à la mesure de cette valeur efficace en précisant la position AC ou DC. Quelle serait la valeur lue si on choisissait l'autre position?

II. Etude de la ventilation.

Un moteur triphasé actionne le ventilateur central.

La plaque signalétique de ce moteur indique : 230 V / 400 V ; 50 Hz

- 1. Couplage du moteur.
 - 1.1. Sur la figure 5 du document-réponse D₃ page 7, représenter les connexions qui raccordent le moteur au réseau 230 V/400 V.
 - 1.2. Justifier le choix du couplage.
- 2. Détermination du point de fonctionnement de l'ensemble moteur-ventilateur.

La caractéristique utile $T_u = f(n)$ du moteur est assimilable à une portion de droite passant par les points A et B de coordonnées :

A: $(950 \text{ tr.min}^{-1}; 30 \text{ N.m})$ et B: $(980 \text{ tr.min}^{-1}; 0 \text{ N.m})$

La caractéristique $T_r = g(n)$ du ventilateur est représentée sur la figure 6 du document-réponse D_3 .

2.1. Tracer la portion de caractéristique du moteur sur la figure 6 du document-réponse D₃.

BT Collaborateur d'Architecte	SUJET	Session 2009
Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE: CASC9		Page 2/7

- 2.2. Déterminer graphiquement les coordonnées du point C, point de fonctionnement de l'ensemble moteur-ventilateur.
- 2.3. Calculer la puissance Pu fournie au ventilateur.
- 3. Rendement du moteur.

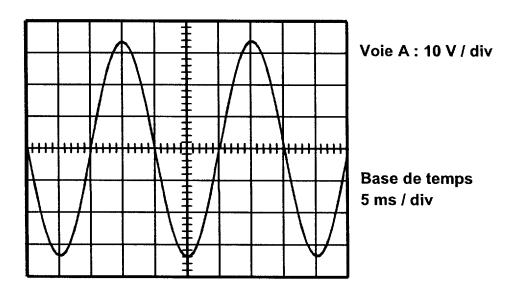
La valeur efficace de l'intensité du courant en ligne est I = 5,2 A.

Le facteur de puissance du moteur est $\cos \varphi = 0.77$.

- 3.1. Calculer la puissance absorbée Pa par le moteur.
- 3.2. Si la puissance fournie au ventilateur P_u est égale à 2 kW , calculer le rendement η du moteur.

III. Eclairage basse tension.

La basse tension est obtenue à l'aide de trois transformateurs monophasés identiques, supposés parfaits.

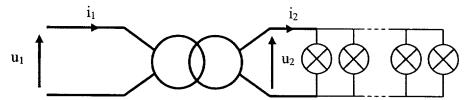

On peut lire sur la plaque signalétique de chacun d'eux les indications suivantes :

230 V / 24 V ; 50 Hz

S = 1,50 kVA.

Les lampes utilisées L sont toutes identiques et de puissance nominale P_L = 60 W chacune.

- 1. Caractéristiques du transformateur.
 - 1.1. Calculer le rapport de transformation m d'un des transformateurs.
 - 1.2. Le primaire d'un transformateur comporte un nombre de spires N_1 =400. Calculer le nombre de spires N_2 du secondaire.
 - 1.3. Calculer la puissance active nominale fournie P2 si la charge est purement résistive .
 - 1.4.On a relevé l'oscillogramme (voie A) de la tension secondaire fournie par le transformateur :



BT Collaborateur d'Architecte	SUJET	Session 2009
Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE: CASC9		Page 3/7

- 1.4.1. Calculer à l'aide de l'oscillogramme, la valeur efficace de la tension fournie.
- 1.4.2. Mesurer la période T et calculer la fréquence f de la tension.

2. Branchement.

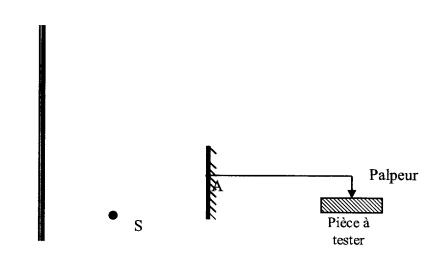
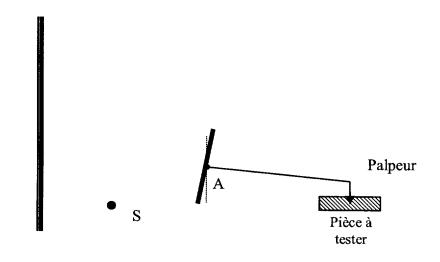
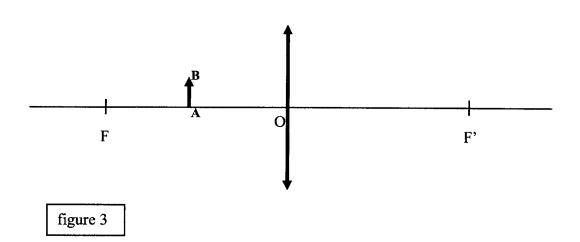
Les lampes sont branchées sur le transformateur selon le schéma ci-dessous :

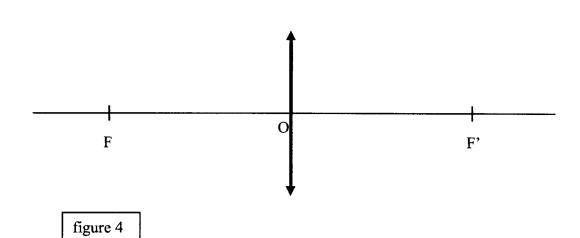
- 2.1. Déterminer le nombre maximal x de lampes supposées purement résistives que peut alimenter chaque transformateur sans dépasser sa puissance nominale.
- 2.2. On branche 20 lampes sur chaque transformateur. Calculer l'intensité efficace I_1 et I_2 des courants primaires et secondaires d'un transformateur.

BT Collaborateur d'Architecte	SUJET	Session 2009
Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE: CASC9		Page 4/7

DOCUMENT-REPONSE D₁ à rendre avec la copie

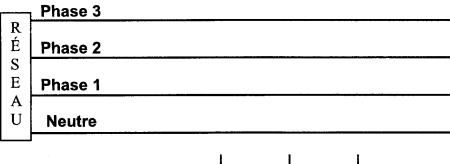
figure 1 : Réglage préliminaire


figure 2 : Détection d'un défaut

BT Collaborateur d'Architecte	SUJET	Session 2009
Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE: CASC9		Page 5/7

DOCUMENT-REPONSE D₂ à rendre avec la copie



BT Collaborateur d'Architecte	SUJET	Session 2009
Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE: CASC9		Page 6/7

DOCUMENT-REPONSE D₃ à rendre avec la copie

figure 5 : Câblage du moteur triphasé

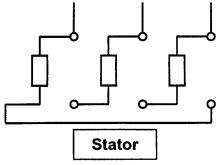
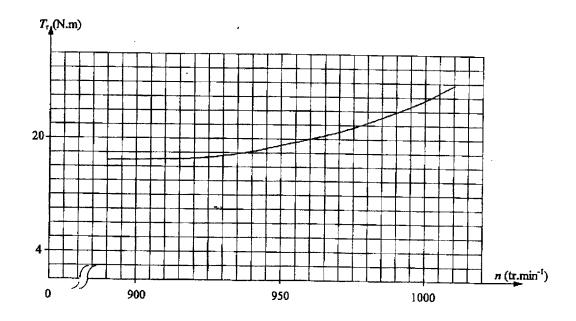



figure 6 : caractéristique mécanique du ventilateur

BT Collaborateur d'Architecte	SUJET	Session 2009
Sciences Physiques	Durée : 2 heures	Coefficient: 2
CODE : CASC9		Page 7/7