

Ce document a été numérisé par le <u>CRDP Nord Pas-de-Calais</u> pour la

Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

B.E.P.

Secteur 6 - Tertiaire 1

Session 2009

Épreuve : Mathématiques

Durée : 1 heure

Coefficient : selon la spécialité

Spécialités concernées :

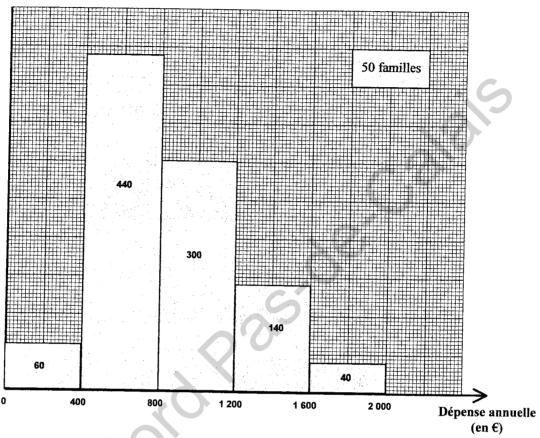
- Logistique et commercialisation
- Métiers de la comptabilité
- Vente action marchande

Remarque:

Ce sujet comporte 6 pages numérotées de 1/6 à 6/6.

Le formulaire est en dernière page.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.


Les candidats répondent sur une copie à part et joignent les annexes.

L'usage de la calculatrice est autorisé.

BEP secteur 6	Session		
Epreuve de mathématiques	2009	Page:	2/6

Exercice n°1: (7,5 points)

Une enquête a été réalisée auprès d'un échantillon de 980 familles occupant des maisons individuelles. Les dépenses annuelles pour leur chauffage sont données par l'histogramme ci-dessous.

- 1.1. Compléter les colonnes (1), (2) et (3) du tableau statistique donné en annexe 1.
- 1.2. En utilisant les centres de classe, calculer la dépense moyenne annuelle \overline{d} pour le chauffage. Arrondir le résultat à l'euro. Le candidat peut utiliser les fonctions statistiques de la calculatrice et écrire directement la valeur de \overline{d} ou présenter des calculs intermédiaires.
- 1.3. Compléter le polygone des effectifs cumulés croissants donné en **annexe 1**. Déterminer graphiquement la dépense médiane annuelle $d_{\rm M}$. Laisser apparents les traits utiles à la lecture. Donner la signification de la médiane $d_{\rm M}$ correspondant à cette situation.
- 1.4. En utilisant le polygone des effectifs cumulés croissants, déterminer graphiquement le nombre de familles payant moins de 1 500 € par an pour leur chauffage.
 Laisser apparents les traits utiles à la lecture.

Exercice n°2: (6,5 points)

Une famille dont la dépense annuelle en chauffage au fioul est de 1 500 € souhaite changer de type de chauffage pour sa maison.

Cette famille peut choisir:

- soit un <u>chauffage solaire</u> avec un investissement de 21 000 €
- soit une pompe à chaleur avec un investissement de 10 000 € et un coût annuel estimé à 500 €

BEP secteur 6	Session		
Épreuve de mathématiques	2009	Page:	3/6

- 2.1. En conservant le <u>chauffage actuel au fioul</u>, la dépense totale d liée au chauffage, au cours des années, est donnée par la relation $d = 1\,500n$ avec n = nombre d'années
 - 2.1.1. Compléter le tableau de valeurs donné en annexe 2.
 - 2.1.2. En utilisant le repère donné en **annexe 2**, placer les points de coordonnées (n ; d). Les trois points appartiennent à la droite notée D₁. Tracer cette droite.
- 2.2. Avec une pompe à chaleur, la dépense totale d liée au chauffage, au cours des années, est donnée par la relation $d = 500n + 10\,000$ avec n =nombre d'années
 - 2.2.1. Compléter le tableau de valeurs donné en annexe 2.
 - 2.2.2. En utilisant le repère donné en **annexe 2**, placer les points de coordonnées (n;d). Les trois points appartiennent à la droite notée D_2 . Tracer cette droite.
- 2.3. En installant un <u>chauffage solaire</u>, la dépense totale *d* liée au chauffage au cours des années est représentée par la droite D₃ déjà tracée dans le même repère de **l'annexe 2**. On admet que :
 - la droite D₁ permet de déterminer la dépense totale liée au chauffage au fioul
 - la droite D₂ permet de déterminer la dépense totale liée au chauffage avec la pompe à chaleur
 - la droite D₃ permet de déterminer la dépense totale liée au chauffage solaire.
 - 2.3.1. Déterminer graphiquement l'intervalle d'années pendant lequel le chauffage actuel au fioul reste le moins cher de tous les chauffages.

 Laisser apparents les traits utiles à la lecture.
 - 2.3.2. Déterminer graphiquement le nombre d'années à partir duquel le chauffage solaire devient le moins cher de tous les chauffages.

 Laisser apparents les traits utiles à la lecture.

Exercice n°3: (6 points)

Une famille a fait changer son installation de chauffage. Le montant de la facture s'est élevé à 10 318,55 €. Une partie de cette facture a été payée au comptant et le reste à crédit.

- 3.1. Cette famille avait placé 2 000 € pendant 5 ans à intérêts composés au taux annuel de 3 %. Calculer la valeur acquise A au terme de ce placement. Arrondir le résultat au centime.
- 3.2. La valeur acquise du placement précédent a été utilisée pour payer une partie de l'installation du chauffage.

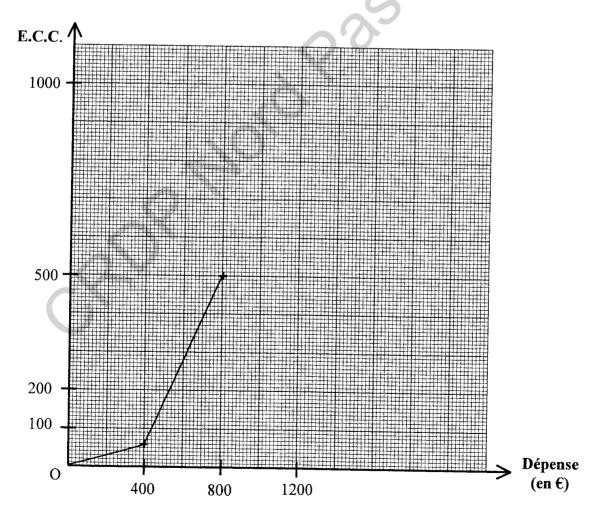
Le reste à payer a été emprunté et le remboursement s'est effectué en <u>trois</u> versements constants.

Le montant x d'un versement est la solution de l'équation :

$$3x - (1 + 2 + 3) \times 0.05x = 8000$$

- 3.2.1. Montrer que cette équation peut s'écrire : 2.7x = 8.000
- 3.2.2. Résoudre cette équation.
- 3.2.3 En déduire le montant d'un versement. Arrondir le résultat au centime.
- 3.2.4 Calculer le coût total de la dépense pour cette installation de chauffage en utilisant le paiement à crédit.

BEP secteur 6	Session		
Épreuve de mathématiques	2009	Page:	4/6


ANNEXE 1 - à rendre avec la copie

Exercice 1:

1.1. Tableau statistique

Dépense annuelle (en €)	Effectif ni	Centre de classe xi	Effectif cumulé croissant	produit <i>ni.xi</i>
[0 ; 400[60	200	60	********
[400 ; 800[440	600	500	
[800 ; 1 200[800	300 000
[; [140		940	196 000
[1 600 ; 2 000[40	1800	980	
Total	980			

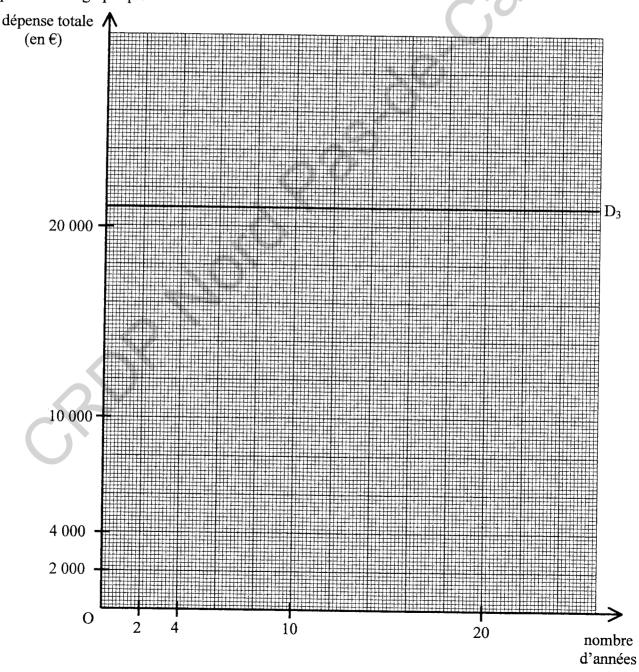
1.3. Polygone des effectifs cumulés croissants

BEP secteur 6	Session		
Épreuve de mathématiques	2009	Page:	5/6

ANNEXE 2 - à rendre avec la copie

Exercice 2:

Tableaux de valeurs à compléter


2.1. Chauffage au fioul

n : nombre d'années	6	10	20
d = 1500 n			

2.2. pompe à chaleur

n: nombre d'années	6	10	20
d = 500 n + 10 000	•••••		(,,,,,,,,

Représentation graphique

FORMULAIRE DE MATHÉMATIQUES BEP DU SECTEUR TERTIAIRE

Identités remarquables

$$(a + b)^2 = a^2 + 2ab + b^2$$
;
 $(a - b)^2 = a^2 - 2ab + b^2$;
 $(a + b)(a - b) = a^2 - b^2$.

Puissances d'un nombre :

$$(ab)^{m} = a^{m}b^{m}$$

$$a^{m+n} = a^{m} \times a^{n}$$

$$(a^{m})^{n} = a^{mn}$$

Racines carrées :

$$\sqrt{ab} = \sqrt{a}\sqrt{b}$$
 ; $\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$

Suites arithmétiques :

terme de rang $1: u_1$ raison: r

terme de rang $n: u_n$

$$u_n = u_{n-1} + r$$

$$u_n = u_1 + (n-1)r$$

Suites géométriques :

terme de rang $1: u_1$ raison q

terme de rang $n: u_n$

$$u_n = u_{n-1}.q$$

$$u_n = u_l.q^{n-l}$$

Statistiques:

moyenne : \bar{x}

$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \ldots + n_p x_p}{N}$$

écart type : σ

$$\sigma^{2} = \frac{n_{1}(x_{1} - \overline{x})^{2} + n_{2}(x_{2} - \overline{x})^{2} + \dots + n_{p}(x_{p} - \overline{x})^{2}}{N}$$

$$\sigma^2 = \frac{n_1 x_1^2 + n_2 x_2^2 + \dots + n_p x_p^2}{N} - \overline{x}^2$$

Calcul d'intérêts :

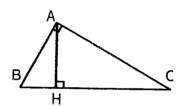
capital : C

taux périodique : t

nombre de périodes : n

valeur acquise après n périodes : A

Intérêts simples


$$I = Ctn$$

$$A = C + I$$

Intérêts composés

$$A = C(1+t)^n$$

Relations métriques dans le triangle rectangle:

$$AB^2 + AC^2 = BC^2$$

 $AH \cdot BH = AB \cdot AC$

$$\sin \hat{B} = \frac{AC}{BC}$$

$$\cos \hat{B} = \frac{AB}{BC}$$

$$\tan \hat{B} = \frac{AC}{AB}$$