

Ce document a été numérisé par le <u>CRDP de Rennes</u>

pour la

Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

BP CHARPENTIER

E1/C1 ÉTUDE MATHÉMATIQUE ET SCIENTIFIQUE

	Session		Facultatif : code	
	2	009		
Examen et spécialité				
Brevet Professionnel Charpentier				
Intitulé de l'épreuve				
E1/C1 Etude mathématique et scienti	fique			
Туре	Facultatif : date et heure	Durée	Coefficient	Nº de page / total
CORRIGÉ		2H00	2	1/4

MATHÉMATIQUES

EXERCICE n°1. (11 points)

D'D = E'E = 6 000 mm donc H'D = $\frac{E'E}{2}$ = 3 000 mm 1.

1 point

a) Dans le triangle H'DA : $\tan \widehat{H'DA} = 0.7$ et $\widehat{H'DA} = \widehat{HDA}$ 2.

soit HDA \approx 35 °.

soit AD \approx 3 662 mm

1 point

b) Dans le triangle H'DA, $\cos \widehat{\text{H'DA}} = \frac{H'D}{4D}$ d'où AD = $\frac{3000}{\cos 35}$

1 point 1 point

a) Dans le triangle H'DA, tan $\widehat{H'DA} = 0.7 = \frac{AH'}{H'D}$ 3.

(ou toute autre méthode correcte)

donc AH' = $0.7 \times 3000 = 2100 \text{ mm}$

b) AI = H'I' + H'A - II', soit AI = 1500 + 2100 - 2340 = 1260 mm

₽point 1 point

point

1 point 1\point

Soit IC = $\frac{H'D \times AI}{AH'} \approx 1~800 \text{ mm}$ $C'C = 2 \times 1800 = 3600 \text{ mm}$

0,5 point

a) $\overrightarrow{CDE} = \overrightarrow{CDH} + \overrightarrow{HDE} = 35$ 4.

0,5 point

0,5 point 0,5 point

EXERCICE n°2. (5 points)

d)

On obtient avec les données de l'énoncé : 1.

$$100x + 7y = 10400$$
$$90x + 8y = 10890$$

1 point

et après simplification de la deuxième égalité :

0,5 point

a) Résolution du système : on trouve : x = 41 et y = 900. 2. Le montant d'une heure de main d'œuvre est 41 € et

2 points

le montant d'un m³ de chêne est 900 €.

0,5 point

Rappel codage 2/4

b) Devis correspondant: 95×41 + 7,5×900 = 10 645 €. 1 point

Breve	t Professionnel Char	entier		
E1/C1	Etude mathématique	et scientifique		

EXERCICE n° 3 (4 points)

Le tableau suivant présente l'évolution de la superficie des forêts sur les différents continents entre 1990 et 2005.(source : FAO)

	Superficie (en millier d'hectares)			Taux annuel de changement (entre 1990 et 2005)
Continent	1990	2005	Evolution moyenne annuelle	en %
Afrique	699 361	635 412	-4263	-0,61
Asie	574 487	571 577	-194	-0,03
Europe	989 321	1 001 394	805	0,08
Amérique du sud	890818	831 539	-3952	-0,44
Amérique du nord	710 790	705 849	-329	-0,05
Océanie	212 514	206 254	-417	-0,20
Total	4 077 291	3 952 025	-8351	-0,20

1. Réponse correcte:

2. 0,5 point par réponse correcte

3. a) Réponse correcte

2050 - 1990 = 60 soit 60 and b)

 $-4077291 \times 60 \times 0.0020 = 3388016$

soit 3/588 016 milliers d'hectares de forêts en 2050. On acceptera également: 3 952025

1 point 1 point

1 point

1 point

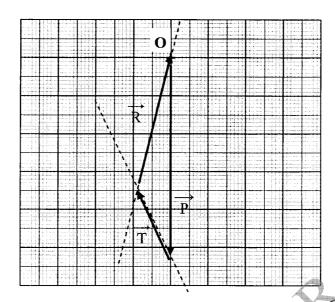
 $952\ 025 \times 45 \times 0,0020 \approx 3596343)$

SCIENCES PHYSIQUES

EXERCICE nº4. (9 points)

1. Intensité du poids $P = m \times g = 2500 \text{ N}$

1 point 2,5 points


2. 0,25 point par réponse correcte

7 1					
Force	Notation	Point d'application	Direction	Sens	Valeur (en N)
Poids de la poutre.	\overrightarrow{P}	G		Vers le bas	2 500 N
Réaction du mur sur la poutre.	\overrightarrow{R}	М	14 %	7	
Tension de la corde sur la poutre.	→	N	25 °		

Brevet Professionnel Charpentier	Rappel codage
E1/C1 Etude mathématique et scientifique	3/4

3. a) Dynamique des forces (0,5 pour P, et 1 point pour R et T)

2,5 points.

Echelle: 1 cm pour 500 N

b) T: longueur du vecteur ≈ 2 cm

soit
$$T = 1 000 \text{ N}$$
 et soit $R = 1 750 \text{ N}$

10 H₂O

3 points

R longueur du vecteur ≈ 3.5 cm

(on veillera à accorder les points en fonction du tracé du dynamique des forces)

EXERCICE n°5 (7 points)

1. Réactifs de cette réaction : butane et dioxygène

1 point

2. Equilibre de l'équation chimique de la combustion

 $2 C_4 H_{10}$

4.

1 point

3. a) Nombre de moles de dioxygéne

5,3 mal

1 point

a) M = $16 + 2 \times 1 = 18 \text{ g/zh}$

1 point

a) W = 10 + 2 × 1 = 18 g/Hol

1 point

b) pour une mol de butane, on produit $\frac{10}{2}$ = 5 moles d'eau donc

1 point

$$m = 5 \times 18 = 90$$

1 point

EXERCICE n°6 (4 points)

1.
$$\eta = \frac{2200}{2750} = 0.8$$

1 point

$$I = \frac{Pa}{U\cos\varphi}$$

0,5 point

Soit
$$\frac{2750}{230 \times 0.9} \approx 13,3 \text{ A}$$

1 point

3. E absorbée au cours de ce fonctionnement : 20 min = $\frac{1}{3}$ h

0,5 point

donc E =
$$2750 \times \frac{1}{3} \approx 917 \text{ Wh}$$

1 point

Brevet Professionnel Charpentier
E1/C1 Etude mathématique et scientifique

Rappel codage