

Ce document a été numérisé par le <u>CRDP de Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Campagne 2009

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

SESSION 2009

BREVET DE TECHNICIEN SUPERIEUR

SPÉCIALITÉS	COEF.	DURÉE
ÉLECTROTECHNIQUE	2 3 3	3
GÉNIE OPTIQUE	3	3
INFORMATIQUE ET RÉSEAUX POUR L'INDUSTRIE ET LES SERVICES TECHNIQUES	3	3
TECHNIQUES PHYSIQUES POUR L'INDUSTRIE ET LE LABORATOIRE	3	3

MATHÉMATIQUES

Le sujet comprend 6 pages, numérotées de 1 à 6.

La page 6 est à rendre avec la copie.

Le formulaire officiel de mathématiques est joint au sujet.

Il comprend 7 pages, numérotées de 1 à 7.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

L'usage des instruments de calcul et du formulaire officiel de mathématiques est autorisé.

Code sujet MATGRA1

SESSION 2009

BREVET DE TECHNICIEN SUPERIEUR

SPÉCIALITÉS	COEF.	DURÉE
ÉLECTROTECHNIQUE	3	3
GÉNIE OPTIQUE	3	3
INFORMATIQUE ET RÉSEAUX POUR L'INDUSTRIE ET LES SERVICES TECHNIQUES	3	3
TECHNIQUES PHYSIQUES POUR L'INDUSTRIE ET LE LABORATOIRE	3	3

MATHÉMATIQUES

Le sujet comprend 6 pages, numérotées de 1 à 6.

La page 6 est à rendre avec la copie.

Le formulaire officiel de mathématiques est joint au sujet.

Il comprend 7 pages, numérotées de 1 à 7.

La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

L'usage des instruments de calcul et du formulaire officiel de mathématiques est autorisé.

Code sujet MATGRA1

Exercice 1 (9 points)

Cet exercice se compose de trois parties qui peuvent être traitées indépendamment l'une de l'autre.

On s'intéresse aux requêtes reçues par le serveur web d'une grande entreprise, provenant de clients dispersés sur le réseau Internet.

La réception de trop nombreuses requêtes est susceptible d'engendrer des problèmes de surcharge du serveur.

Partie A:

Dans cette partie, on s'intéresse au nombre de requêtes reçues par le serveur, au cours de certaines durées jugées critiques.

On désigne par τ un nombre réel strictement positif. On appelle X la variable aléatoire qui prend pour valeurs le nombre de requêtes reçues par le serveur dans un intervalle de temps de durée τ (exprimée en secondes). La variable aléatoire X suit une loi de Poisson de paramètre $\lambda = 500 \tau$.

- 1. Dans cette question, on s'intéresse au cas où $\tau = 0.01$.
 - a) Déterminer la probabilité que le serveur reçoive au plus une requête au cours d'une durée τ de 0,01 s.
 - b) En expliquant votre démarche, déterminer le plus petit entier naturel n_0 tel que $P(X > n_0) < 0.05$.
- 2. Dans cette question, on s'intéresse au cas où τ = 0,2.
 On rappelle que la loi de Poisson de paramètre λ = 100 peut être approchée par la loi normale de moyenne μ = 100 et d'écart type σ = 10.
 En utilisant cette approximation, calculer :
 - a) la probabilité P(X > 120);
 - b) une valeur approchée du nombre réel positif a tel que $P(100 a \le X \le 100 + a) = 0.99$.

Partie B:

Dans cette partie, on considère :

- d'une part, que la probabilité pour le serveur de connaître des dysfonctionnements importants au cours d'une journée donnée est p = 0.01;
- d'autre part, que des dysfonctionnements importants survenant au cours de journées distinctes constituent des événements aléatoires indépendants.

MATGRA1

- 1. On appelle Y la variable aléatoire correspondant au nombre de jours où le serveur connaît des dysfonctionnements importants au cours d'un mois de 30 jours.
 - a) On admet que la variable aléatoire Y suit une loi binomiale. Préciser les paramètres de cette loi.
 - b) Calculer, à 10⁻³ près, la probabilité que le serveur connaisse au plus 2 jours de dysfonctionnements importants pendant un mois.
- 2. On appelle Z la variable aléatoire correspondant au nombre de jours où le serveur connaît des dysfonctionnements importants au cours d'une année de 365 jours.
 - a) Donner, sans justification, la loi de probabilité de la variable aléatoire Z.
 - b) Donner l'espérance mathématique et l'écart type de la variable aléatoire Z.

Partie C:

Dans cette partie, on s'intéresse à la durée séparant deux requêtes successives reçues par le serveur.

On appelle T la variable aléatoire qui prend pour valeurs les durées (exprimées en secondes) séparant l'arrivée de deux requêtes successives sur le serveur.

- 1. On désigne par t un nombre réel positif. La probabilité que T prenne une valeur inférieure ou égale à t est donnée par : $P(T \le t) = \int_{0}^{t} 500 e^{-500x} dx$.
 - a) Calculer $P(T \le t)$ en fonction de t.
 - b) En déduire la valeur de t pour laquelle $P(T \le t) = 0.95$. On donnera la valeur exacte puis une valeur approchée au millième de seconde.
- 2. a) Calculer, à l'aide d'une intégration par parties, l'intégrale $I(t) = \int_0^t 500 \ x \, e^{-500x} dx$.
 - b) Déterminer la limite m de I(t) quand t tend vers $+\infty$.

Le nombre m est l'espérance mathématique de la variable aléatoire T. Il représente la durée moyenne séparant la réception de deux requêtes successives.

Commentaire:

Ce modèle, très simple, intéresse les concepteurs de systèmes d'information ou de télécommunication car il fournit des évaluations de certaines performances d'un système, en particulier au sens du "scénario du pire des cas".

Exercice 2 (11 points)

Dans cet exercice, on étudie un système « entrée-sortie ». La partie A permet de déterminer la réponse à l'échelon unité. Les parties B et C permettent d'étudier les perturbations résultant d'une coupure de 0,1 seconde.

On rappelle que la fonction échelon unité U est définie par :

$$\begin{cases} U(t) = 0 & \text{si } t < 0 \\ U(t) = 1 & \text{si } t \ge 0 \end{cases}$$

Une fonction définie sur **R** est dite causale si elle est nulle sur l'intervalle $]-\infty;0[$.

Partie A:

On considère la fonction causale s_1 telle que, pour tout nombre réel t:

$$s_1(t) + \int_0^t s_1(u) du = U(t).$$

On note S_1 la transformée de Laplace de la fonction S_1 .

- 1. Montrer que $S_1(p) = \frac{1}{p+1}$.
- **2.** En déduire $s_1(t)$ pour tout nombre réel t.

La courbe représentative de la fonction s_1 est donnée par la figure 1 du document réponse.

Partie B:

On considère la fonction causale s_2 telle que, pour tout nombre réel t:

$$s_2(t) + \int_0^t s_2(u) du = U(t) - U(t-1).$$

On note S_2 la transformée de Laplace de la fonction S_2 .

1. Représenter graphiquement la fonction e_2 définie sur l'ensemble des nombres réels par :

$$e_2(t) = U(t) - U(t-1)$$
.

- 2. Déterminer $S_2(p)$.
- 3. a) En déduire $s_2(t)$ pour tout nombre réel t.
 - b) Justifier que:

$$\begin{cases} s_2(t) = 0 & \text{si} \quad t < 0 \\ s_2(t) = e^{-t} & \text{si} \quad 0 \le t < 1 \\ s_2(t) = -e^{-t}(e - 1) & \text{si} \quad t \ge 1 \end{cases}$$

- **4.** Établir le sens de variation de la fonction s_2 sur l'intervalle $]1;+\infty[$.
- 5. Calculer $s_2(1^+) s_2(1^-)$.
- **6.** On appelle C_2 la courbe représentative de la fonction s_2 .

MATGRA1

a) Reproduire et compléter le tableau de valeurs ci-dessous :

t	1	1,1	1,5	2	2,5	
$s_2(t)$						

Les résultats seront donnés à 10^{-2} près.

b) Compléter le tracé de la courbe C_2 sur la figure 2 du document réponse, à rendre avec la copie.

Partie C:

On considère la fonction causale s_3 telle que, pour tout nombre réel t:

$$s_3(t) + \int_0^t s_3(u) du = U(t) - U(t-1) + U(t-1,1).$$

1. Soit la fonction e_3 définie sur l'ensemble des nombres réels par :

$$e_3(t) = U(t) - U(t-1) + U(t-1,1)$$
.

- a) Montrer que $e_3(t) = e_2(t)$ pour tout nombre réel t appartenant à l'intervalle $]-\infty; 1,1[$.
- **b)** Déterminer $e_3(t)$ pour $t \ge 1,1$.
- c) Représenter graphiquement la fonction e_3 .

Pour la suite, on admet que :

$$\begin{cases} s_3(t) = s_2(t) & \text{si } t < 1, 1 \\ s_3(t) = e^{-t} \left(1 - e + e^{1,1} \right) & \text{si } t \ge 1, 1 . \end{cases}$$

- 2. Établir le sens de variation de la fonction s_3 sur l'intervalle] 1,1; + ∞ [.
- 3. Calculer $s_3(1,1^+)-s_3(1,1^-)$.
- 4. On appelle C_3 la courbe représentative de la fonction s_3 .
 - a) Reproduire et compléter le tableau de valeurs ci-dessous :

· · · · · · · · · · · · ·			
t = 1,1	1,5	2	2,5
n (t)			
$S_3(t)$			
L			1

Les résultats seront donnés à 10^{-2} près.

b) Compléter le tracé de la courbe C_3 sur la figure 3 du document réponse, à rendre avec la copie.

Document réponse, à rendre avec la copie (exercice 2)

Figure 1 : représentation de la fonction s_1

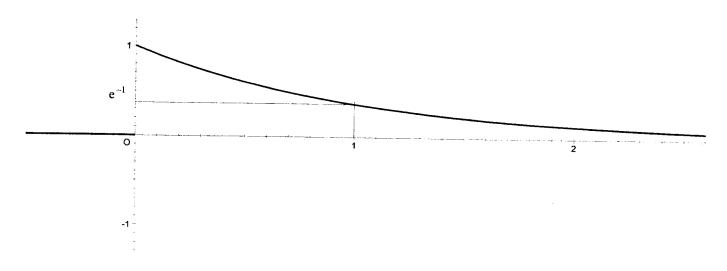


Figure 2 : représentation de la fonction s_2 à compléter

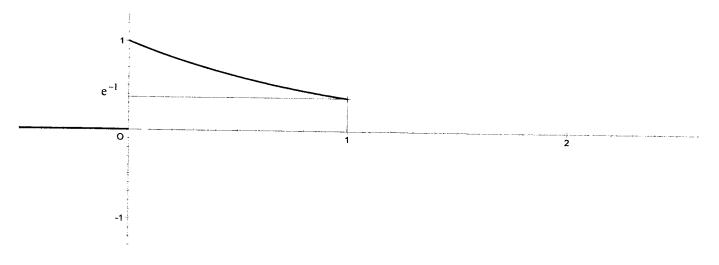
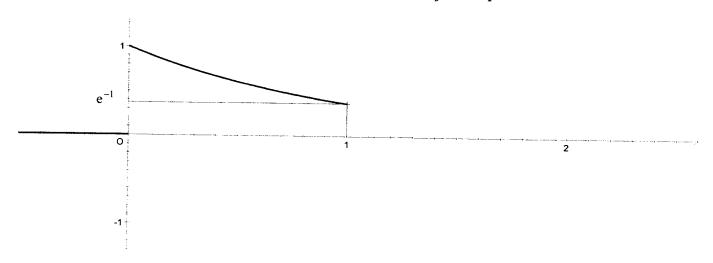


Figure 3 : représentation de la fonction s_3 à compléter



GROUPEMENT A

CONTROLE INDUSTRIEL ET REGULATION AUTOMATIQUE

ELECTROTECHNIQUE

GENIE OPTIQUE

INFORMATIQUE ET RESEAUX POUR L'INDUSTRIE ET LES SERVICES TECHNIQUES

SYSTEMES ELECTRONIQUES

TECHNIQUES PHYSIQUES POUR L'INDUSTRIE ET LE LABORATOIRE

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}$$
, où $a > 0$

$$t^{\alpha} = e^{\alpha \ln t}$$
, où $t > 0$

$$cos(a+b) = cos a cos b - sin a sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$cos(2t) = 2cos^2 t - 1 = 1 - 2sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin (a+b) + \sin (a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{at} = e^{\alpha t} \left(\cos(\beta t) + i \sin(\beta t) \right), \text{ où } a = \alpha + i\beta$$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim_{t\to\infty} \ln t = +\infty \; ;$$

$$\lim_{t \to +\infty} e^t = +\infty ;$$

$$\lim e^t = 0 ;$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

si
$$\alpha < 0$$
, $\lim_{\alpha \to \infty} t^{\alpha} = 0$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t\to 0} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{\alpha \to 0} t^{\alpha} = 0$;

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$; si $\alpha < 0$, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
ln t	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
e ¹	$\mathrm{e}^t \ lpha t^{lpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
$t^{\alpha} \ (\alpha \in \mathbb{R})$ $\sin t$	$\cos t$	$e^{at} \ (a \in \mathbb{C})$	ae ^{at}
cos t	-sin <i>t</i>		
tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$		

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u'$$

 $(v \circ u)' = (v' \circ u)u'$ $(e^u)' = e^u u'$ $(\ln u)' = \frac{u'}{u}, \quad u \text{ à valeurs strictement positives}$ $(u^{\alpha})' = \alpha u^{\alpha - 1} u'$

$$(u^{\alpha})' = \alpha u^{\alpha - 1} u$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]:

$$\frac{1}{b-a} \int_{a}^{b} f(t) \, \mathrm{d}t$$

Intégration par parties :
$$\int_{a}^{b} u(t) v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t) v(t) dt$$

d) Développements limités

$$e' = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon (t)$$

$$= \frac{1}{1+t} = 1 - t + t^{2} + \dots + (-1)^{n} t^{n} + t^{n} \varepsilon (t)$$

$$\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3} + \dots + (-1)^{n-1} \frac{t^{n}}{n} + t^{n} \varepsilon (t)$$

$$= \sin t = \frac{t}{1!} - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \dots + (-1)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$$

$$\cos t = 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{p} \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon (t)$$

$$(1+t)^{\alpha} = 1 + \frac{\alpha}{1!} t + \frac{\alpha(\alpha-1)}{2!} t^{2} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} t^{n} + t^{n} \varepsilon (t)$$

$$\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$$

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon (t)$$

$$(1+\epsilon)^{\alpha} = 1 + \frac{\alpha}{4!} + \frac{\alpha(\alpha-1)}{2!} + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{2!} t^n + \dots$$

e) Equations différentielles

Équations	Solutions sur un intervalle I							
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$							
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique							
équation caractéristique :	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique							
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines							
de discriminant Δ	complexes conjuguées de l'équation caractéristique.							

3. SERIES DE FOURIER

f: fonction périodique de période T;

développement en série de Fourier :

$$s(t) = a_0 + \sum_{n=1}^{+\infty} (a_n \cos(n\omega t) + b_n \sin(n\omega t)) = \sum_{-\infty}^{+\infty} c_k e^{ik\omega t}, \quad (n \in \mathbb{N}^*, k \in \mathbb{Z}).$$

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t) dt ; \qquad a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos(n\omega t) dt ; \qquad b_n = \frac{2}{T} \int_a^{a+T} f(t) \sin(n\omega t) dt .$$

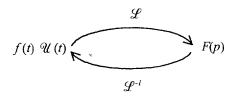
$$c_k = \frac{1}{T} \int_a^{a+T} f(t) e^{-ik\omega t} dt \quad (k \in \mathbb{Z}); \qquad c_0 = a_0; \qquad \frac{a_n - ib_n}{2} = c_n; \qquad \frac{a_n + ib_n}{2} = c_{-n} \quad (n \in \mathbb{N}^*).$$

4. TRANSFORMATION DE LAPLACE

Fonctions usuelles

$$\mathcal{L}(\mathcal{U}(t)) = \frac{1}{p} ; \qquad \mathcal{L}(t\mathcal{U}(t)) = \frac{1}{p^2} ; \qquad \mathcal{L}(t^n \mathcal{U}(t)) = \frac{n!}{p^{n+1}} (n \in \mathbb{N}) ;
\mathcal{L}(e^{-at} \mathcal{U}(t)) = \frac{1}{p+a} ; \qquad \mathcal{L}(\sin(\omega t) \mathcal{U}(t)) = \frac{\omega}{p^2 + \omega^2} ; \qquad \mathcal{L}(\cos(\omega t) \mathcal{U}(t)) = \frac{p}{p^2 + \omega^2}.$$

Propriétés



$f(\alpha t) \mathcal{U}(t) \qquad \alpha > 0$	$\frac{1}{\alpha}F\left(\frac{p}{\alpha}\right)$
$f(t-\tau)\mathcal{U}(t-\tau)$	$F(p) e^{-\tau p}$
$f(t) e^{-at} \mathcal{U}(t)$	F(p+a)
$f'(t)\mathcal{U}(t)$	$pF(p)-f(0^+)$
$f''(t)\mathcal{U}(t)$	$p^2 F(p) - p f(0^+) - f'(0^+)$
$-t f(t) \mathcal{U}(t)$	F'(p)
$\int_0^t f(u) \mathcal{U}(u) \mathrm{d} u$	$\frac{F(p)}{p}$

5. TRANSFORMATION EN Z

Signal causal	Transformée en Z
$n \mapsto x(n) \text{ pour } n \in \mathbb{N}$	$z \mapsto (Zx)(z)$
e(n)=1	$(Ze)(z) = \frac{z}{z-1}$
$\begin{cases} d(0) = 1 \\ d(n) = 0 \text{ si } n \neq 0 \end{cases}$	(Zd)(z) = 1
r(n) = n	$(Zr)(z) = \frac{z}{(z-1)^2}$
$c(n)=n^2$	$(Zc)(z) = \frac{z(z+1)}{(z-1)^3}$
$f(n)=a^n, \ a\in\mathbb{R}-\{0\}$	$(Zf)(z) = \frac{z}{z-a}$
$y(n) = a^n x(n), \ a \in \mathbb{R} - \{0\}$	$(Zy)(z) = (Zx)\left(\frac{z}{a}\right)$
$y(n) = x(n - n_0), (n - n_0) \in \mathbb{N}$ ou $y(n) = x(n - n_0)e(n - n_0)$	$(Zy)(z) = z^{-n_0} (Zx)(z)$
y(n) = x(n+1)	(Zy)(z) = z[(Zx)(z) - x(0)]
y(n) = x(n+2)	$(Zy)(z) = z^{2} [(Zx)(z) - x(0) - x(1)z^{-1}]$
$y(n) = x(n + n_0), \ n_0 \in \mathbb{N}^*$	$(Zy)(z) = z^{n_0} \left[(Zx)(z) - x(0) - x(1)z^{-1} - x(2)z^{-2} \cdots - x(n_0 - 1)z^{-(n_0 - 1)} \right]$

6. PROBABILITES

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$; $E(X) = np$; $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

$\frac{\lambda}{k}$	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5	ŕ	0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

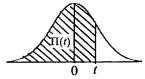
×λ	1	1.5	2	3	4	5	6	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.146	0.089	0.052	0.029	0.015	0.008
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8	,	0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12					0.001	0.003	0.011	0.026	0.048	0.073	0.095
13			Ì		0.000	0.001	0.005	0.014	0.030	0.050	0.073
14						0.000	0.002	0.007	0.017	0.032	0.052
15							0.001	0.003	0.009	0.019	0.035
16		1			<u> </u>		0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0.006	0.013
18								0,000	0.001	0.003	0.007
19									0.000	0.001	0.004
20										0.001	0.002
21										0,000	0.001
22											0.000

c) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$



t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,516 0	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,547 8	0,5517	0,555 7	0,559 6	0,563 6	0,567 5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,587 1	0,591 0	0,594 8	0,598 7	0,602 6	0,606 4	0,610 3	0,614 1
0,3	0,617 9	0,621 7	0,625 5	0,629 3	0,633 1	0,636 8	0,640 6	0,644 3	0,648 0	0,651 7
0,4	0,655 4	0,659 1	0,662 8	0,666 4	0,670 0	0,673 6	0,677 2	0,6808	0,684 4	0,687 9
0,5	0,691 5	0,695 0	0,698 5	0,7019	0,705 4	0,708 8	0,712 3	0,715 7	0,719 0	0,722 4
0,6	0,725 7	0,729 0	0,732 4	0,735 7	0,738 9	0,742 2	0,745 4	0,748 6	0,751 7	0,754 9
0,7	0,758 0	0,761 1	0,764 2	0,767 3	0,770 4	0,773 4	0,776 4	0,779 4	0,782 3	0,785 2
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,807 8	0,810 6	0,813 3
0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	0,831 5	0,834 0	0,836 5	0,838 9
1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,862 1
1,1	0,864 3	0,866 5	0,868 6	0,8708	0,872 9	0,874 9	0,877 0	0,879 0	0,881 0	0,883 0
1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	0,896 2	0,898 0	0,899 7	0,901 5
1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,914 7	0,916 2	0,9177
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,931 9
1,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938 2	0,939 4	0,940 6	0,941 8	0,942 9	0,944 1
1,6	0,945 2	0,946 3	0,947 4	0,948 4	0,949 5	0,950 5	0,9515	0,952 5	0,953 5	0,954 5
1,7	0,955 4	0,956 4	0,957 3	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962 5	0,963 3
1,8	0,964 1	0,964 9	0,965 6	0,966 4	0,967 1	0,9678	0,968 6	0,969 3	0,969 9	0,970 6
1,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6	0,976 1	0,976 7
2,0	0,977 2	0,977 9	0,978 3	0,9788	0,979 3	0,9798	0,980 3	0,980 8	0,981 2	0,981 7
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0	0,985 4	0,985 7
2,2	0,986 1	0,986 4	0,9868	0,987 1	0,987 5	0,9878	0,988 1	0,988 4	0,988 7	0,989 0
2,3	0,989 3	0,989 6	0,989 8	0,990 1	0,990 4	0,990 6	0,990 9	0,991 1	0,991 3	0,9916
2,4	0,9918	0,992 0	0,992 2	0,992 5	0,992 7	0,992 9	0,993 1	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,9943	0,994 5	0,994 6	0,994 8	0,994 9	0,995 1	0,995 2
2,6	0,995 3	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	0,996 1	0,996 2	0,996 3	0,996 4
2,7	0,996 5	0,996 6	0,996 7	0,9968	0,996 9	0,997 0	0,997 1	0,997 2	0,997 3	0,997 4
2,8	0,997 4	0,997 5	0,997 6	0,9977	0,997 7	0,997 8	0,997 9	0,997 9	0,998 0	0,998 1
2,9	0,998 1	0,998 2	0,998 2	0,998 3	0,998 4	0,998 4	0,998 5	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE t

t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
$\Pi(t)$	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota : $\Pi(-t) = 1 - \Pi(t)$