

par le <u>Ck</u>
L'Examens de l'e
Campagne 2010 Ce document a été numérisé par le <u>CRDP de Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

CORRIGÉ / BARÈME

EXERCICE I: CHIMIE (7 points)

fonction alcool.

b.
$$\left(\begin{array}{c} H & H \\ C - PA & C - O \end{array}\right)$$
 PE - O $\left(\begin{array}{c} C - O \end{array}\right)$ n Groupe ester

0,75 (0,25 fonction + 0,5 liaison)

c. Polymérisation par polycondensation car il y a élimination intermoléculaire d'une petite molécule (eau).

$$0,5(0,25 + 0,25 \text{ pour justification})$$

2.
$$\begin{pmatrix} H & H & H & O \\ \downarrow & \downarrow & \downarrow & \downarrow \\ a. & \begin{pmatrix} V & C & N-C & C \\ \downarrow & 6 & \end{pmatrix} & \begin{pmatrix} L & C & \\ \downarrow & 1 & \\ \end{pmatrix} & \begin{pmatrix} L & C & C & \\ \end{pmatrix} & \begin{pmatrix} L & C & C & \\ \end{pmatrix} & \begin{pmatrix} L & C & C & \\ \end{pmatrix} & \begin{pmatrix} L & C & C & \\ \end{pmatrix} & \begin{pmatrix} L & C & C & \\ \end{pmatrix} & \begin{pmatrix} L & C & C & \\ \end{pmatrix} & \begin{pmatrix} L & C & C & \\$$

0,5

groupe amide b.

0,5

c.
$$NH_2 - (CH_2)_6 - NH_2$$

0,5

COOH - (CH₂)₄ - COOH

0,5

0,5

e.
$$M_{polymère} = n \times M_{motif}$$

 $M_{motif} = 226 \text{ g.mol}^{-1}$

RÉSERVÉ AU SERVICE

CRDP de MONTPELLIER

EXERCICE II : MÉCANIQUE (7 points)

 $M_{polymere} = 3390 \text{ g.mol}^{-1} = 3.4 \text{ kg.mol}^{-1}$

1.
$$\omega_{A} = \frac{2\pi \cdot n}{60} = 105 \text{ rad.s}^{-1}$$

b.
$$v = \omega_A \times R_A = 15,7 \text{ m.s}^{-1}$$

c.
$$\omega_B = \frac{v}{R_B}$$
 car mouvement sans glissement donc v = constante. 0,5 (v = cst)

$$\omega_B = 262 \text{ rad.s}^{-1}$$

La poulie B est solidaire du moteur. $\omega_{\rm M} = 262 \; {\rm rad.s^{-1}} = 2500 \; {\rm tr.min^{-1}}$

$$0.5$$
 (en rad.s⁻¹) + 0.5 (en tr.min⁻¹)

BTS INDUSTRIES DES MATÉRIAUX SOUPLES		Session 2010
Corrigé sciences physiques appliquées – U. 32	IMABSCA	Page: 1/3

d. Entre les poulies : mouvement rectiligne uniforme.	0,5
Sur les poulies : mouvement circulaire uniforme.	0,5

a.
$$Q_1 = m \cdot c_e \cdot (\theta_f - \theta_i) = 1{,}35 \text{ MJ}$$
 0,75

b.
$$Q_2 = m \cdot L_V = 9,04 \text{ MJ}$$
 0,75

c.
$$Q_T = Q_1 + Q_2 = 1,04 \times 10^7 \text{ J}$$
 0,5

d.
$$E > Q_T$$
 donc le séchage est complet. 0,5

EXERCICE III : OPTIQUE (6 points)

a.
$$\lambda = \frac{c}{N} = 4{,}35 \times 10^{-7} \text{ m}$$
 0,5

d. E > Q_T donc le séchage est complet. 0,5

EXERCICE III : OPTIQUE (6 points)

1.

a.
$$\lambda = \frac{c}{N} = 4,35 \times 10^{-7} \text{ m}$$

b. $\lambda = 435 \text{ nm}$ donc radiation visible car 400 nm < λ < 750 nm. 0,75 (Dont 0,25 pour justification.)

a.
$$\overline{OA} = -70 \text{ m}$$
 0.5 $\overline{OA'} = 15 \text{ mm}$ **0.5**

b.
$$\frac{1}{\overline{OA'}} - \frac{1}{\overline{OA}} = \frac{1}{\overline{OF'}}$$
 done $f' = \overline{OF'} = 15 \text{ mm}$

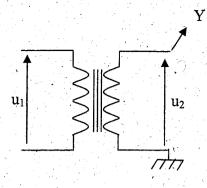
Résultat cohérent car objet à l'infini donc image dans le plan 0,25 focal image.

c.
$$\gamma = OA'/OA = -2.1 \times 10^{-4}$$
 (Valeurs algébriques non exigées.) 0,5

d. A'B' =
$$\gamma$$
 . AB = 5,4 × 10⁻⁴ m = 0,54 mm **0,5**

a. Synthèse additive. 0,5

Objet	Couleur(s) diffusée(s)	
Feuillage vert	Vert	
Soleil jaune	Rouge et vert	
Ciel bleu	Bleu	
Nuage blanc	Rouge, vert et bleu.	


c. Nuage blanc perçu de couleur magenta car vert non perçu 0,5 donc reste rouge + bleu.

BTS INDUSTRIES DES MATÉRIAUX SOUPLES	Session 2010
Corrigé sciences physiques appliquées – U. 32 IMABSCA	Page: 2/3

 4×0.25

EXERCICE IV : ÉLECTRICITÉ (6 points)

1.

0,75 (dont 0,25 pour branchements oscillo)

2. Voltmètre position « AC ».

a.
$$\hat{U}_2 = 70 \text{ V}$$

$$U_2 = \frac{\hat{U}_2}{\sqrt{2}} = 49 \text{ V}$$

b. T = 20 ms

$$f = \frac{1}{T} = 50 \text{ Hz}$$

0,25

 $\omega = 2\pi f = 314 \text{ rad.s}^{-1}$

0,5

c. Abaisseur, m < 1.

0,5

$$m = \frac{U_2}{U_1} = 0,21$$

d.
$$N_2 = m \times N_1 = 55$$

0,5

tamens Enseignement On accepte N₁ entier entre 51 et 55 en fonction du nombre de chiffres significatifs conservés dans les calculs.

a.
$$S = U_2 \times I_2 = 198 \text{ V.A.}$$

0,5

b.
$$\cos \varphi = \frac{P}{S} = 0.48$$

0,5

c. $I_1 = m \times I = 0.86 \text{ A}$

0,5

CRDP de MONTPELLIER

RÉSERVÉ AU SERVICE

BTS INDUSTRIES DES MATÉRIAUX SOUPLES		Session 2010
Corrigé sciences physiques appliquées – U. 32	IMABSCA	Page: 3/3

Base Nationale des Sujets of N