

LE RÉSEAU DE CRÉATION ET D'ACCOMPAGNEMENT PÉDAGOGIQUES

Ce document a été mis en ligne par le Canopé de l'académie de Bordeaux pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel.

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

ÉLÉMENTS DE RÉPONSE PROPOSITION DE BARÈME

EXERCICE 1 (12 points)

A.1°	Toutes les solutions de (E_0) sont définies sur R par : $h(x) = C e^x$ avec C réel.	1 point
2°	Pour tout x réel $g'(x) = e^x + x e^x + 2$ d'où $g'(x) - g(x) = e^x - 2x$. Donc g est solution de (E) .	1,5 point
3°	Toutes les solutions de (E) sont définies sur R par : $f(x) = h(x) + g(x)$, $f(x) = Ce^x + xe^x + 2x + 2$ ou $f(x) = (x + C)e^x + 2x + 2$ avec C réel quelconque.	0,5 point
4°	La solution cherchée est définie sur R par : $f(x) = (x + 1) e^x + 2x + 2$.	1 point
B.1°	$\lim_{x \to +\infty} f(x) = +\infty.$	
	Mettre 0,25 point si le résultat n'est pas justifié.	0,5 point
2°	Réponse B.	1 point
3° a)	$f(x) = 3 + 4x + \frac{3}{2}x^2 + x^2 \varepsilon(x)$ avec $\lim_{x \to 0} \varepsilon(x) = 0$.	1,5 point
b)	Réponse B.	1 point
c)	Réponse A.	1 point
C.1°	I=4.	0,5 point
2°	$J = e + e^{-1}.$	1 point
3° a)	$K = 4 + e + e^{-1}$.	0,5 point
b)	$K \approx 7,09$.	0,5 point
(c)	K est l'aire, en unités d'aire, de la partie du plan limitée par la	
dio	courbe C, l'axe des abscisses et les droites d'équations $x = -1$ et $x = 1$.	0,5 point

GROUPEMENT B DES BTS	SESSION 2010
Mathématiques Corrigé	MATGRB2 Corrigé
Durée : 2 heures	Page: 1/2

EXERCICE 2 (8 points)

A.1° a)
$$E(p) = 1$$
 (u (t)) = $\frac{1}{p}$. 0,5 point

b)
$$S(p) = H(p) \times E(p) = \frac{2p}{(p+1)^2 + 1} \times \frac{1}{p} = \frac{2}{(p+1)^2 + 1}$$
. 0,5 point

2° a)
$$I^{-1}\left(\frac{1}{p^2+1}\right) = \sin(t) \text{ u } (t).$$
 0,5 point

b)
$$S(p) = 2 \times F(p+1) \text{ avec } F(p) = \frac{1}{p^2 + 1}.$$

$$s(t) = 1^{-1} [S(p)] = 2 \times 1^{-1} [F(p)] e^{-t} = 2 \sin t e^{-t} u(t).$$
 1,5 point

$$B.1^{\circ}$$
 a) $M=A$.

b)
$$H(j\omega) = 1$$
. 0,5 point

c)
$$\frac{\omega}{2} - \frac{1}{\omega} = 0$$
 c'est-à-dire $\omega^2 = 2$ d'où $\omega = \sqrt{2}$ car $\omega > 0$. 1 point

b)
$$H(j\omega) = 1$$
.
c) $\frac{\omega}{2} - \frac{1}{\omega} = 0$ c'est-à-dire $\omega^2 = 2$ d'où $\omega = \sqrt{2}$ car $\omega > 0$.
 2° a) $r(\omega) = |H(j\omega)| = |\frac{1}{1 + j(\frac{\omega}{2} - \frac{1}{\omega})}| = \frac{1}{|1 + j(\frac{\omega}{2} - \frac{1}{\omega})|};$
 $r(\omega) = \frac{1}{\sqrt{1 + (\frac{\omega}{2} - \frac{1}{\omega})^2}};$
b) $\omega + \sqrt{2} = 0$ où $\omega - \sqrt{2} = 0$ d'où $\omega = \sqrt{2}$ car $\omega > 0$.

$$r(\omega) = \frac{1}{\sqrt{1 + (\frac{\omega}{2} - \frac{1}{\omega})^2}}.$$
 1,5 point

b)
$$\omega + \sqrt{2} = 0$$
 ou $\omega - \sqrt{2} = 0$ d'où $\omega = \sqrt{2}$ car $\omega > 0$. 1 point

GROUPEMENT B DES BTS	SESSION 2010
Mathématiques Corrigé	MATGRB2 Corrigé
Durée : 2 heures	Page : 2/2