

Ce document a été numérisé par le <u>CRDP</u> de <u>Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel. Base Wattonale des suiet

Campagne 2010

BTS MAINTENANCE ET APRÈS-VENTE DES ENGINS DE TRAVAUX-PUBLICS ET DE MANUTENTION

BTS AGRO-ÉQUIPEMENT

SCIENCES PHYSIQUES – U. 32 Scionnell SESSION 2010 John Physical Session 201

Durée: 1 heure 30 Coefficient: 1

Matériel autorisé :

des sijets die tam - Toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (Circulaire n°99-186, 16/11/1999).

Document à rendre avec la copie :

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Le sujet comporte 7 pages, numérotées de 1/7 à 7/7.

BTS MAVTPM / BTS AGRO-ÉQUIPEMENT		Session 2010
Sciences physiques – U. 32	MME3SC / AGPHY	Page: 1/7

Exercice N°1:

Électricité (8 points)

On se propose d'étudier le principe de la commande automatique de fonctionnement des essuievitres d'un véhicule en cas de pluie (annexe 1, page 6/7).

Depuis quelques années le fonctionnement intermittent de ces derniers a été remplacé par un dispositif automatique, régi par un capteur d'humidité, situé sur le pare-brise.

Ce capteur peut être modélisé par une source de courant dont l'intensité i varie en fonction de la quantité de pluie reçue par le pare-brise.

Données techniques

Les caractéristiques du capteur sont :

- absence de pluie, pare brise sec : i = 3 mA;
- pluie fine : i = 2 mA;
- pluie abondante : i = 1 mA.

Les amplificateurs opérationnels sont considérés comme parfaits. Ils sont alimentés entre 0 V et 12 V. Leur tension de sortie ne peut prendre que deux valeurs : $V_H = 12 \text{ V}$ ou $V_L = 0 \text{ V}$.

Les valeurs des résistances R_6 et R_7 permettent le fonctionnement en commutation des transistors T_1 et T_2 .

 K_1 et K_2 sont des relais.

Lorsqu'ils sont alimentés en courant leur contacteur est en position T. Dans le cas contraire, il est en position R.

Liste des composants : $R_1 = 3 \text{ k}\Omega$; $R_2 = 2.8 \text{ k}\Omega$; $R_3 = 2 \text{ k}\Omega$; $R_4 = 5 \text{ k}\Omega$; $R_5 = 10 \text{ k}\Omega$.

Le potentiel de la masse M sera pris égal à 0 ($V_M = 0V$).

On notera V_A la tension entre le point A et la masse, et V_B la tension entre le point B et la masse. On désignera par MEV le moteur d'essuie vitres.

A - Étude des amplificateurs opérationnels

- 1- Exprimer la relation existant entre U_{R1} , R_1 et i. Calculer U_{R1} quand i = 3 mA.
- 2- Exprimer U_D en fonction de E et U_{R1} . Calculer U_D quand i = 3 mA.
- 3- Exprimer V_A en fonction de E, R_2 et R_3 puis calculer sa valeur numérique.
- 4- Exprimer V_B en fonction de E, R₄ et R₅ puis calculer sa valeur numérique.
- 5- Lorsque i = 3 mA déterminer V_{d1} et V_{S1} puis V_{d2} et V_{S2} .

BTS MAVTPM / BTS AGRO-ÉQUIPEMENT		Session 2010
Sciences physiques – U. 32	MME3SC / AGPHY	Page: 2/7

B - Étude de la commande moteur

1- Étude du transistor T₁

- 1-1- Quel est le type du transistor T_1 ?
- 1-2- Quel est l'état de T_1 lorsque $V_{S1} = V_L = 0 \text{ V}$?
- 1-3- Quel est l'état de T_1 lorsque $V_{S1} = V_H = 12 \text{ V}$?
- 1-4- Sur quelle position le relais K_1 se trouve-t-il quand le transistor T_1 est

2- Étude du transistor T₂

- $\text{ uel est l'état de } T_2 \text{ lorsque } V_{S2} = V_H = 12 \text{ V ?}$ 2-3- Quel est l'état de T_2 lorsque $V_{S2} = V_L = 0 \text{ V ?}$ 2-4- Sur quelle position le relais K_2 se trouve bloqué ?

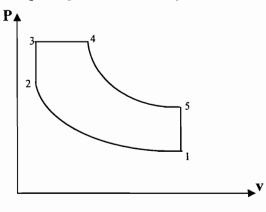
C – Synthèse

Pour préciser l'état de fonctionnement du moteur PV (petite vitesse) ou GV (grande vitesse), on se propose de remplir le tableau suivant.

On étudiera les 3 cas:

- 1^{er} cas: i = 3 mA, absence de pluie;

- $2^{\text{ème}}$ cas : i = 2 mA, pluie fine ;


 $3^{\text{ème}}$ cas : i = 1 mA, pluie abondante.

Compléter le tableau en annexe 2 (page 7/7).

Exercice N°2:

Thermodynamique (7,5 points)

Le cycle d'un moteur Diesel correspond globalement au cycle suivant :

Admission: $V_1 = 3.2 L$

; $P_1 = 1.0 \times 10^5 \, \text{Pa}$

$$T_1 = 345 \text{ K}$$

Transformation:

- $1 \rightarrow 2$: compression adiabatique;
- $2 \rightarrow 3$: combustion à volume constant ($V_2 = 0.2 \text{ L}$; $T_2 = 1046 \text{ K}$; $P_2 = 48.5 \text{ bar}$);
- $3 \rightarrow 4$: combustion à pression constante (P₃ = 55×10^5 Pa);
- 4 → 5 : détente adiabatique ;
- $5 \rightarrow 1$: détente à volume constant.

On considère une quantité de 0,111 mol de gaz supposé parfait, décrivant ce cycle. De plus, on pose :

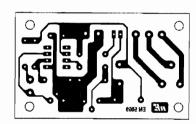
- $R = 8,32 \text{ J.mol}^{-1}.\text{K}^{-1}$ pour la constante des gaz parfaits ;
- $C_V = 20.8 \text{ J.mol}^{-1}.\text{K}^{-1}$ pour la capacité thermique molaire à volume constant;
- $\gamma = \frac{Cp}{Cv} = 1$, 4 où C_P est la capacité thermique molaire à pression constante.

On rappelle que lors d'une transformation adiabatique PV^{γ} = constante et $TV^{\gamma-1}$ = constante.

1- Calculer la température T₃ à la fin de la combustion à volume constant et vérifier qu'elle vaut environ 1190 K.

On considère qu'à l'issue de la combustion, la température T₄ a atteint 2655 K et le volume V₄ s'élève à 0,448 L.

- **2-** Montrer que la pression P₅ est égale à 3,51×10⁵ Pa. En déduire la température T₅ à la fin de la détente adiabatique.
- 3- Pour les deux transformations adiabatiques, que peut-on dire des chaleurs Q₁₂ et Q₄₅?
- 4- Calculer les chaleurs Q₂₃ et Q₃₄.


Pour la suite, on admettra que la chaleur Q_{51} vaut environ – 1995 J.

5- Déduire des résultats précédents, le travail reçu au cours du cycle W_{cycle} , en appliquant le premier principe de la thermodynamique. Justifier son signe.

BTS MAVTPM / BTS AGRO-ÉQUIPEMENT		Session 2010
Sciences physiques – U. 32	MME3SC / AGPHY	Page: 4/7

Chimie (4,5 points)

Fabrication du circuit imprimé

Au laboratoire d'électronique, on réalise le circuit imprimé de notre système de détection par gravure chimique de plaques d'époxy recouvertes de cuivre.

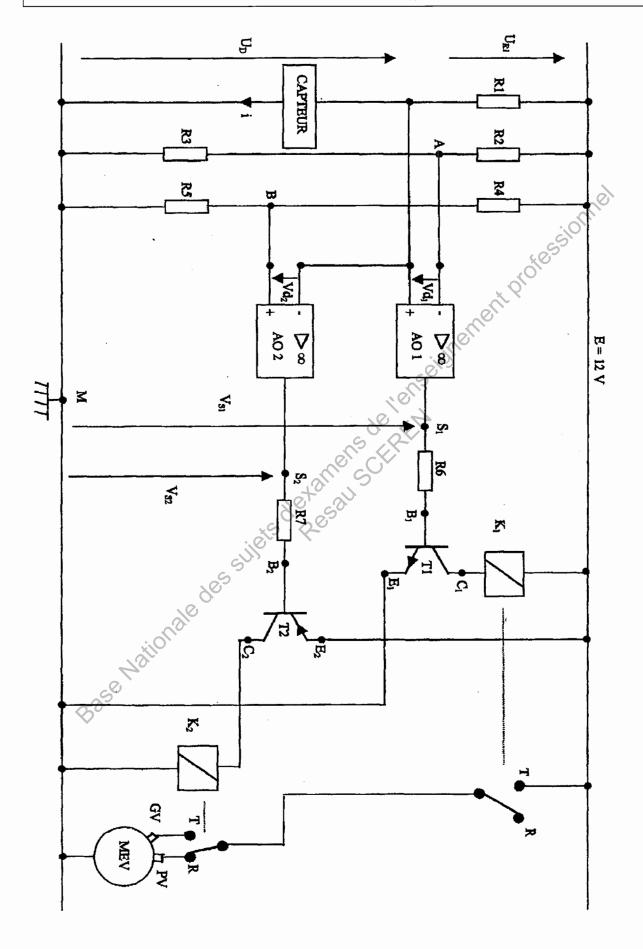
Le métal cuivre qui n'est pas utilisé pour le circuit est oxydé dans un bain de chlorure de fer III.

Le couple Rédox qui intervient ici est Fe³⁺/Fe²⁺, le réducteur n'étant pas le métal mais un autre ion.

Les potentiels standards de ces deux couples, à 298 K, sont :

$$\begin{split} E_0 & (Fe^{3+}/Fe^{2+}) = +0,77 \ V \ ; \\ E_0 & (Cu^{2+}/Cu) = +0,34 \ V. \end{split}$$

- 1- Justifier l'affirmation : Fe^{3+} est une espèce chimique plus oxydante que Cu^{2+} .
- 2- Écrire les demi-équations d'oxydoréduction des couples Fe³⁺ / Fe²⁺ et Cu²⁺ / Cu puis l'équation-bilan de la réaction chimique d'attaque du cuivre par les ions fer III.


On réalise un circuit imprimé sur une plaque recouverte d'une pellicule de cuivre parallélépipédique d'épaisseur 0,020 mm. La surface de cuivre à éliminer par oxydo-réduction est de 50 cm².

- 3- Sachant que la masse volumique du cuivre ρ est égale à 8,9 g/cm³, déterminer la masse m de cuivre à oxyder.
- 4- Montrer que la quantité de cuivre contenue dans cette masse m est n(Cu) = 0,014 mol.
- 5- Calculer la quantité d'ions Fe³⁺ nécessaire pour réaliser cette oxydation.
- 6-Le volume de la solution de chlorure de fer III est égale à 100 mL. Vérifier que la concentration minimale de cette solution nécessaire pour oxyder tout le cuivre est 0,28 mol.L⁻¹.

Données : $M(Cu) = 63.5 \text{ g.mol}^{-1}$.

BTS MAVTPM / BTS AGRO-ÉQUIPEMENT		Session 2010
Sciences physiques – U. 32	MME3SC / AGPHY	Page: 5/7

ANNEXE 1

BTS MAVTPM / BTS AGRO-ÉQUIPEMENT		Session 2010
Sciences physiques – U. 32	MME3SC / AGPHY	Page: 6/7

	ш	u
	٥	2
	ā	7
	ĩ	•
•	ù	ú
	_	,
	í	i
	Ξ	-
	Ц	_
	U	Ų

Examen ou concours :Spécialité/Option :	Série* :	Numérotez chaque page (dans le cadre en bas de la page)
Repère de l'épreuve :		et placez les feuilles intercalaires dans
Épreuve/sous-épreuve :		le bon sens.

ANNEXE 2 À rendre avec la copie

Tableau – Exercice 1 – Partie C

	1 ^{er} cas	2 ^{ème} cas	3ème cas
I en mA			esio.
U _D en V			O
V _{d1} en V		erit	
V _{d2} en V		Sellie	
V _{S1} en V		Ceidi	
V _{S2} en V		Sole PEN Seignernent	
État de T ₁		96 FL	
État de T ₂	CE C	CEL	
Position de K ₁	atan a	5	
Position de K ₂	5000		
État de MEV	cije		
Base Wational	e des suiets de pesal		

BTS MAVTPM / BTS AGRO-ÉQUIPEMENT
Sciences physiques – U. 32
MME3SC / AGPHY
Session 2010
Page : 7/7