

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

BACCALAURÉAT PROFESSIONNEL CARROSSERIE Option : CONSTRUCTION

ÉPREUVE SCIENTIFIQUE ET TECHNIQUE (E1) Sous-épreuve B1 MATHÉMATIQUES ET SCIENCES PHYSIQUES

BACCALAURÉAT PROFESSIONNEL REPARATION DES CARROSSERIES

ÉPREUVE SCIENTIFIQUE ET TECHNIQUE (E1) Sous-épreuve £12 MATHÉMATIQUES ET SCIENCES PHYSIQUES

Durée : 2 heures

Coefficient: 2

Le materiel autorisé comprend toutes les calculatrices de poche y compris les calculatrices programmables, alphanumériques ou à écran graphique à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante (Réf. C n° 99 - 186 du 16 - 11 - 1999).

Ce sujet comporte 8 pages dont le formulaire et 2 annexes (à remettre avec la copie).

MATHÉMATIQUES (15 points)

Les exercices 1, 2 et 3 sont indépendants.

EXERCICE 1: (5 points)

Les voitures sont rangées en classes (A, B, C, D, E, F et G) selon leur émission de CO₂.

L'étiquette « émission de CO₂ » des voitures est reproduite ci-dessous :

Emissions de GO₂ faibles

Entesions de CO₂ élevées

1. Le document ci-dessous donne un extrait de la fiche technique d'un véhicule automobile.

Carburant: Essence

Motorisation: 1.6 L 16 V 150 CV TURBO

Indice de pollution CO₂: 171 g/km

Consommation mixte: 7,2 L/100

Consommation extra urbaine: 5,8 L/100

Consommation urbaine: 9,6 L/100

Puissance fiscale: 9 CV

À l'aide de la documentation technique, déterminer la classe du véhicule étudié.

On réalise une étude statistique sur les émissions de CO₂ des 2 064 540 voitures vendues en France au cours d'une année.

- 2. Compléter le tableau de l'annexe 1 page 6/8. Les résultats seront arrondis à l'unité.
- 3. Déterminer la classe modale.
- 4. Le polygone des fréquences cumulées croissantes est donné en annexe 1 (on suppose que la variation de l'effectif est uniforme dans chaque classe).
 - a) Déterminer graphiquement la médiane de la série statistique. Les traits de construction nécessaires à la lecture devront figurer sur le schéma.
 - b) Donner la signification de cette valeur.

EXERCICE 2: (7 points)

La consommation C d'une voiture à essence sur 100 km s'exprime en fonction de la vitesse ν sous la forme : $C = 0.05 \nu + \frac{80}{\nu}$, avec ν en km/h et C en L.

Partie A: (5,5 points) Étude de fonction

On considère la fonction f définie sur l'intervalle [20; 150] par : $f(x) = 0.05 x + \frac{80}{x}$.

- 1. Montrer que $f'(x) = 0.05 \frac{80}{x^2}$ via f' désigne la fonction dérivée de la fonction f.
- 2. Vérifier que la fonction dérivée f' s'annule pour x = 40.
- 3. On admet que f'(x) est du signe de (x-40) sur l'intervalle [20; 150]. Compléter le tableau de variation de la fonction f sur l'annexe 2 page 7/8.
- 4. Compléter le tableau de valeurs de la fonction f sur l'annexe 2. Les résultats seront arrondis à 10^{-1} .
- 5. Dans le repère donné en annexe 2, tracer la courbe représentative de la fonction f.

Partie B: (1,5 point) Exploitation de l'étude précédente

Avec les notations précédentes, on a : C = f(v).

- 1. Pour quelle vitesse du véhicule la consommation est-elle minimale ? Quelle est cette consommation minimale ?
- 2. Déterminer graphiquement la vitesse v correspondant à une consommation de 6,5 L. Les traits de construction nécessaires à la lecture devront figurer sur le schéma.

EXERCICE 3: (3 points)

Pour apporter une solution aux problèmes d'émission de dioxyde de carbone (CO2), certains constructeurs ont fabriqué des véhicules électriques.

Au cours de l'année 2009, la production d'un constructeur français a été de 4 000 véhicules électriques. Le constructeur prévoit d'augmenter sa production de 16 % par an.

On note:

 P_1 le nombre de véhicules électriques produits en 2009 : $P_1 = 4000$;

P₂ le nombre de véhicules électriques produits en 2010 ;

 P_n le nombre de véhicules électriques produits en 2008 + n.

- Calculer P2 et P3, les nombres de véhicules électriques produits respectivement en 2010 et 2011. 1.
- Quelle est la nature de la suite (P_n)? Justifier la réponse et préciser la raison de cette suite. 2.
- 3. Exprimer P_n en fonction de n.
- 4. a) Déterminer la valeur de n correspondant à l'année 2017.
- ques proc. l'unité. b) Quel sera le nombre de véhicules électriques produits en 2017 si l'augmentation annuelle est

SCIENCES PHYSIQUES (5 points)

Les exercices 1 et 2 sont indépendants.

EXERCICE 1: (3 points)

Le carburant utilisé par les véhicules à essence est un mélange de diverses molécules comme l'octane et l'isooctane.

On considère que l'essence est essentiellement composée d'octane et d'isooctane.

- 1. L'isooctane (C₈H₁₈) est aussi appelé 2.2.4-triméthylpentane : à quelle famille appartient it?
- 2. Recopier, compléter et équilibrer l'équation bilan de la combustion complète de l'isoc ctane.

$$...C_8H_{18}$$
 + $...O_2$ \rightarrow ... +

- 3. Calculer les masses molaires moléculaires de l'isooctane et du dioxyde de carbone CO2.
- 4. Le véhicule étudié consomme en moyenne 6,4 L de carburant aux 160 kilomètres.
 - a) Calculer, en gramme, la masse du carburant consommée par l'isomètre parcouru.
 - b) Calculer le nombre de moles n d'isooctane correspondant. Arrondir au millième.
 - c) En déduire le nombre de moles de dioxyde de carbone produit.
 - d) Calculer, en gramme, la masse de dioxyde de carbone rejetée dans l'atmosphère par kilomètre parcouru. Arrondir à l'unité. Retrouver la classe correspondante dans l'extrait de la fiche technique page 2/8.

Données:

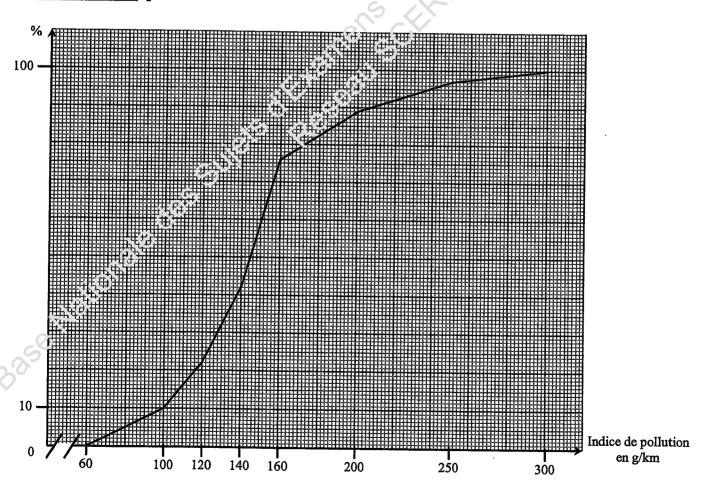
Masse volumique de l'isooctane : $\rho = 700 \text{ g/J}$

Masses molaires atomiques: M(C) = 12 g/mol; M(H) = 1 g/mol; M(O) = 16 g/mol

EXERCICE 2: (2 points)

Dans l'atelier de carrosserie, on utilise un poste à souder dont nous allons étudier le transformateur monophasé alimenté au primaire par le réseau EDF sous une tension de 230 V.

- 1. Sur la pieque signalétique du transformateur, il est noté que sa puissance apparente, notée « S », est de 2 500 VA.
 - En déduire l'intensité, arrondie au dixième, qui traverse l'enroulement primaire lorsqu'il fonctionne à pleine puissance.
- 2. Sachant que lors d'une soudure, l'intensité délivrée par le secondaire du transformateur est de 210 A et l'intensité primaire de 10,9 A, calculer la tension au secondaire (on suppose que le transformateur est parfait). Le résultat sera arrondi au dixième.


Données:
$$S = U \times I$$
 $\frac{U_2}{U_1} = \frac{I_1}{I_2}$ (pour un transformateur parfait)

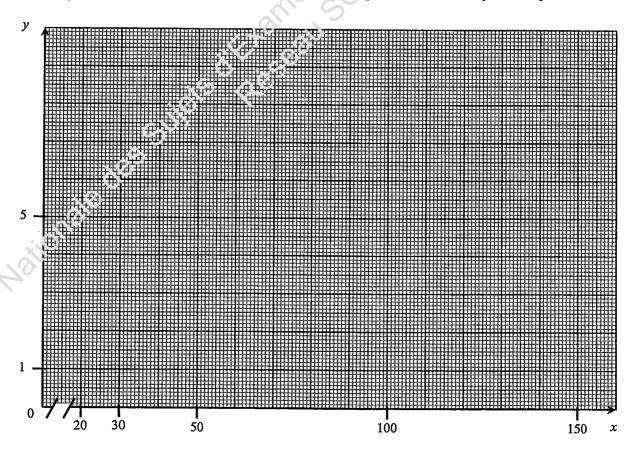
ANNEXE 1 (À remettre avec la copie)

EXERCICE 1: question 2.

Indices de pollution CO ₂ (g/km)	Nombres de voitures	Fréquences (%)	Fréquences cumulées croissantes
[60; 100[206 454	10	653
[100; 120[247 745	- *	
[120; 140[20	
[140; 160[
[160 ; 200[268 390	13	
[200; 250[165 163	8	
[250; 300[3	
	2 064 540	100	

EXERCICE 1: question 4.

ANNEXE 2 (À remettre avec la copie)


EXERCICE 2 : partie A question 3. Tableau de variation de la fonction f

x	20	40	150
Signe de $f'(x)$		0	
Variation de <i>f</i>			ent Pro

EXERCICE 2: partie A question 4. Tableau de valeurs de la fonction j

x	20	30	40	50	60	70	80	90	100	110	120	130	140	150
f(x)	5	4,2		4,1		4,6		5,4	5,8	6,2	6,7		7,6	8

EXERCICE 2 : partie A question 5. Tracé de la courbe représentative de la fonction f

FORMULAIRE DE MATHÉMATIQUES DU BACCALAURÉAT PROFESSIONNEL

Secteur industriel: Artisanat, Bâtiment, Maintenance - Productique

(Arrêté du 9 mai 1995 - BO spécial n°11 du 15 juin 1995)

Fonction f	<u>Dérivée</u> f'
f(x)	f'(x)
ax + b	a
x^2	2x
x^3	$3x^2$
<u>1</u>	_ 1
x	x^2
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

<u>Logarithme népérien : ln</u> $\ln (a^n) = n \ln a$ $\ln (ab) = \ln a + \ln b$ $\ln (a/b) = \ln a - \ln b$

Equation du second degré $ax^2 + bx + c = 0$ $\Delta = b^2 - 4ac$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si $\Delta < 0$, aucune solution réelle Si $\Delta \ge 0$, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1:u_1$ et raison rTerme de rang $n:u_n=u_1+(n-1)$. Somme des k premiers termes:

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1: u_1 \in \text{raison } q$ Terme de rang $n: u_n = u_1 q^{n-1}$ Somme des k premiers termes : $1 - q^k$

$$u_1 + u_2 + \cdots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Tricomométrie

$$\sin (a+b) = \sin a \cos b + \sin b \cos a$$

$$\cos (a+b) = \cos a \cos b - \sin a \sin b$$

$$\cos 2a = 2\cos^2 a - 1$$

$$= 1 - 2\sin^2 a$$

$$\sin 2a = 2\sin a \cos a$$

Statistiques

Effectif total $N = \sum_{i=1}^{p} n_i$ Moyenne $\overline{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$ Variance $V = \frac{\sum_{i=1}^{p} n_i (x_i - \overline{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \overline{x}^2$

Exart type $\sigma = \sqrt{V}$

Relations métriques dans le triangle rectangle

$$AB^{2} + AC^{2} = BC^{2}$$

$$\sin \widehat{B} = \frac{AC}{PC}; \cos \widehat{B} = \frac{AB}{BC}; \tan \widehat{B} = \frac{AC}{AB}$$
Résolution de triangle

 $\frac{A - a}{\sin A} = \frac{b}{\sin C} = \frac{c}{2R}$ $\sin A \sin \widehat{B} \sin \widehat{C}$

R: rayon du cercle circonscrit

 $a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$ Aires dans le plan

Triangle: $\frac{1}{2}bc \sin \widehat{A}$

Trapèze : $\frac{1}{2}(B+b)h$

Disque: πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h: Volume Bh Sphère de rayon R:

Aire: $4\pi R^2$ Volume: $\frac{4}{3}\pi R^3$

Cône de révolution ou pyramide de base B et de hauteur h: Volume $\frac{1}{2}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$\vec{v}.\vec{v}' = xx' + yy' \qquad | \vec{v}.\vec{v}' = xx' + yy' + zz' ||\vec{v}|| = \sqrt{x^2 + y^2} \qquad ||\vec{v}|| = \sqrt{x^2 + y^2 + z^2} \text{Si } \vec{v} \neq \vec{0} \text{ et } \vec{v}' \neq \vec{0} : \vec{v}.\vec{v}' = ||\vec{v}|| \times ||\vec{v}'|| \cos(\vec{v}, \vec{v}') \vec{v}.\vec{v}' = 0 \text{ si et seulement si } \vec{v} \perp \vec{v}'$$