

Ce document a été numérisé par le <u>CRDP de Rennes</u>

pour la

Base Nationale des Sujets d'Examens de l'enseignement
professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

G(O)RRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

SESSION 2010

B.P. Monteur en installations de génie climatique

EPREUVE E.1

Etude, préparation et suivi d'une réalisation

Durée: 5 h 30 - Coefficient: 4

DOSSIER REPONSE

Questions	Folios	Thèmes	Not	es
1	DR 2/14	DIB lecture de plan		/6
2	DR 3/ et 4/14	thermique		/14
3	DR 5/14	Combustion, rendement.	65	/ 10
4	DR 6/14	Dimensionnement		/ 10
5	DR 7/14	Traitement de l'eau		/ 10
6	DR 8/14	Équilibrage		/ 10
7	DR 9/ et 10/14	Pente régulation		/10
8	DR 11/ 14	Pompes , hydraulique		/ 30
9	DR 12/14	Mise en service froid		/6
10/11	DR 13/et 14/14	Fonctionnement froid 1 et 2		/ 14
		TOTAL :		/120

QUESTION Nº 1: Lecture de plan

REPONSES

1.1/ Orientation géographique de la façade coté rue :

NORD-EST

1.2/Orientation géographique du bureau R6:

SUD-EST

1.3/ Surface et volume du bureau R6 :

Surface: $4.90 * 3.10 = 15.19 \text{ m}^2$ Volume: $4.90 * 3.10 * 2.60 = 39.49 \text{ m}^3$

QUESTION N° 2: Thermique

REPONSES

2.1/ Calcul du coefficient (U) de transmission surfacique du bureau R6 :

N°	DESIGNATION	Ep.	λ	R
		(m)	(m.°K/W)	(m².°K/W)
	Rsi +Rse			0.17
1	Bardage Red Cedar	0.022	0.17	0.13
2	Lame d'air	0.005		0.11
3	Pare pluie	0.003	0.80	0.004
4	Laine de roche + pare	0.12	0.042	2.86
	vapeur			
5	Lame d'air	0.025		0.18
6	BA 13	0.013	0.35	0.04
			R =	3.49

 $U = 1/R = 1/3.49 = 0.29 \text{ W/m}^2.^\circ\text{K}$

	Code examen : 45022708	B.P. Monteur en installations de génie climatique	E.1 Epreuve écrite	S. 2010	DC1/6	
--	------------------------	---	--------------------	---------	-------	--

2.2/ Calcul des déperditions surfaciques du bureau R6:

DESIGNATION	Surface	U	Δt	Calculs	Déperditions
Mur extérieur	9.41	0.31	28	9.41 * 0.31 * 28	81.67
Fenêtre	3.33	2.40	28	3.33 * 2.40 * 28	223.77
Sol	15.19	0.50	28	15 19 * 0.50 * 28	212.66
Plafond	15/19	0.39	28	15.19 * 0.39 * 28	165.87
				Total	683.97

2.3/ Calcul des déperditi	ions linéiques d	aarreC	ion		
DESIGNATION	Longueur	Ψ	Δt	# Calculs	Déperditions
Plancher bas	4.90	0.60	28	4.90 * 0.60 * 28	82.32
Plancher haut	4.90	0.80	28	4.90 * 0.80 * 28	109.76
				Total	192.08

Calcul des déperditions volumiques du bureau R6 :

DESIGNATION	Volume Δt Calc		Calculs	Déperditions
Renouvellement d'air	39.49	28	0.34 * 39.49 * 28	375.94

Calcul des déperditions totales du bureau R6 :

Dépenditions totales du bureau = 683.97+192.08+375.94 = <u>1261.99 Watt</u>

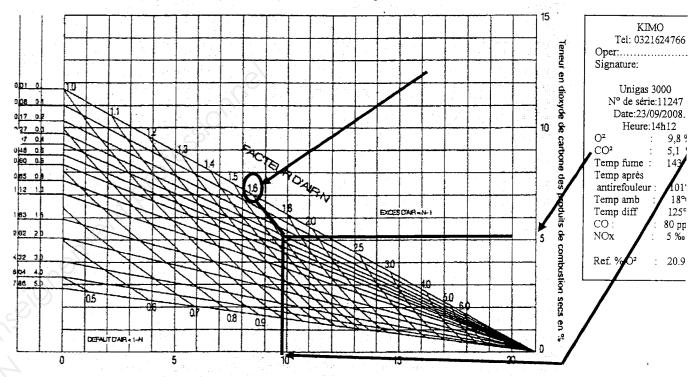
QUESTION N° 3:

COMBUSTION RENDEMENT

REPONSES

3.1/. De déterminer la puissance utile du brûleur en se basant sur le rendement (η) donné dans la notice du constructeur de la chaudière (DT folio lll)

rendement constructeur = 93 %


90 kW / 0.93 = 97.77 kW

3.2/

DIAGRAMME DE COMBUSTION DU GAZ NATUREL

(H₂) (CO) (CO₂) (CO₂)

Diagramme établi pour une température de réaction égals à 1200°C

Teneur en oxygène des produits de combustion secs en %

3.3/. De relever après traçage sur le diagramme le facteur d'air n.

$$n = 1,6$$
 (entre 1,58 et 1,62) soit 60%

3.4/ De calculer le rendement de combustion (ŋ)à l'aide de la formule de SIEGERT (Calculs apparents, encadrez la réponse)

$$100 - [(35 \times 1,6) + 6] \times (143 - 18) / 1000$$

$$100 - 62 \times 0.125$$

$$100 - 7,75 = 92,25$$

$$\eta = 92,25 \%$$

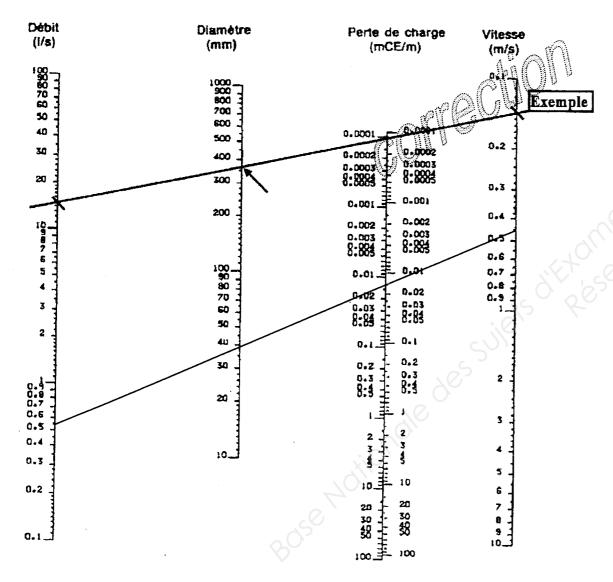
Code examen : 45022708	B.P. Monteur en installations de génie climatique	E.1 Epreuve écrite	S. 2010	DC2/6	
Code examen : 43022700	B.P. Monteur en installations de genie climatique	E.1 Epreuve ecrite	5. 2010	DC2/6	

QUESTION N° 4: DIMENSIONNEMENT DE TUYAUTERIES

REPONSES

4.1/ calculer le débit massique

$$Qm = P / (c \times \Delta \theta)$$


$$45000 / (1,16 \times 20) = 45000 / 23,2 = 1939 \text{ kg/h}$$

$$45000 / (4186 \times 20) = 45000 / 83720 = 0.537 \text{ kg/s}$$

4.2/Débit volumique en litres/heure (l/h) et en litre /seconde (l/s).

1939 l/h 0,537 l/s

4.3/ tracer sur l'abaque, déterminer le diamètre intérieur du tube.

4.4/ diamètre normalisé de TAN.

Ø 42,4 x 2,6

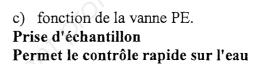
QUESTION N° 5: TRAITEMENT DE L EAU

REPONSES

V.40 CL.40

V.40 5

PE 🕰


V.40

RS.20 V.40

17

- 5.1 a b c / fonction des vannes de l'adoucisseur:
 - a) fonction de la vanne V40 noire **Vanne by-pass**

b) fonction de la vanne RS 20.Réglage du ThVanne proportionnelle

Charge au sai

Polcts d'expédition

5.3/ nombre de jours entre deux régénérations.

Pouvoir d'échange = 200 m^3 $710 \text{ l} = 0.71 \text{ m}^3$ 200 / (40 x 0.71) = 7 jours

Dábhs en m³/h Caractéristiques SC 6000 6016 6025 6050 6075 vanne aula (cycle 5 lemps) Volume de résine 16 25 75 50 100 200 420 °m¹ Capacité d'échange* 100 155 250 Consommation de sel par régénération 1,4 3 2.2 5 4,5 12 kg 14.5 Autonomie du bac à sel (fonction de la C.E°) Nombre de régénérations 20 14 15 23 19 11 Consommation d'eau par régénération pour une pression équivolente à 4 bars **Ifres** 110 175 350 560 Premier chargement bac à set 75 100 100 200

135

35

240

52

300

75

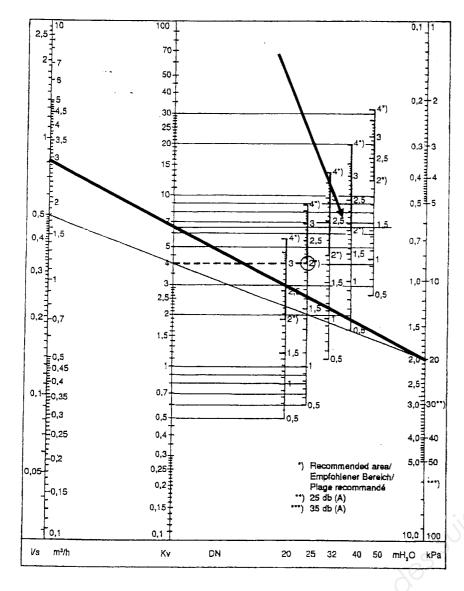
500

125

5.4/Déterminez le nombre de sacs de 25 Kg [(365/2)/7] x 4,5:25 kg = 4,69 sacs, 117 kg de sel pour 6 mois soit 5 sacs de 25 kg

kg

kg


Code examen : 45022708	B.P. Monteur en installations de génie climatique	E.1 Epreuve écrite	S. 2010	DC3/6	
------------------------	---	--------------------	---------	-------	--

QUESTION Nº 6

EQUILIBRAGE HYDRAULIQUE

REPONSES

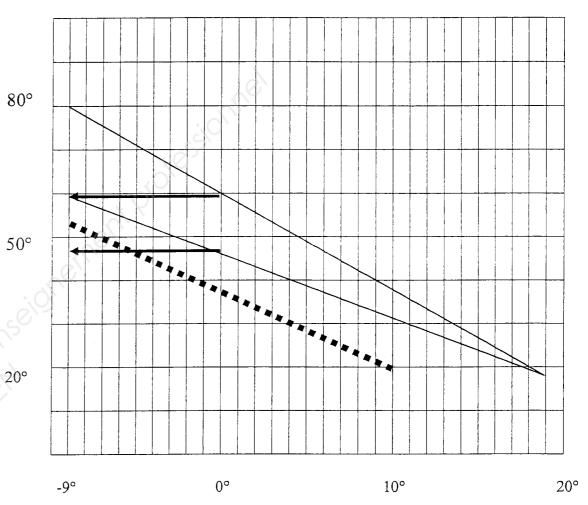
6.1/ Tracer sur l'abaque

6.2/ De donner la valeur de réglage en nombre de tours à effectuer sur la vanne pour équilibrer le réseau radiateurs.

Réglage:

2... tours.

6.3/Donner le coefficient Kv de la vanne en kPa..


.....6,2......

QUESTION Nº 7

7.1/

PENTE DE REGULATION

REPONSES

.7.2/ Donner la température du départ alors que la température extérieure est de 0° C:

Γempérature rele	evée :	60 °	'C

7.3/ Donner le Δ T° eau pour une température extérieure de 0°C :

Δ T° lu:	13°C

7.4/ Traçage de la pente avec la même loi d'eau

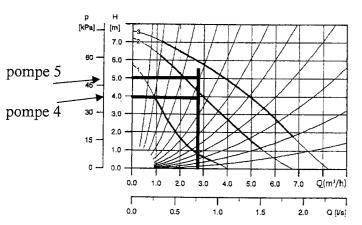
la pente doit être **parallèle** à la pente 80° / 19°

Code examen : 45022708 B.P. Monteur en installations de génie climatique E.1 Epreuve écrit	S. 2010	DC4/6
--	---------	-------

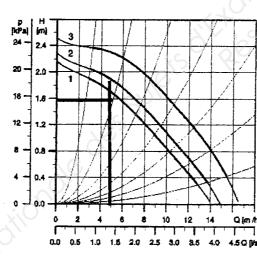
QUESTION Nº 8

HYDRAULIQUE. POMPES DE CHAUFFAGE

8..1/ De renseigner le tableau ci-dessous

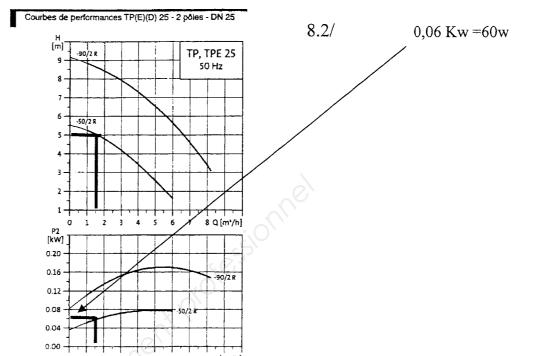

Pompe repére	Référence Grundfos	Débit volumique (Qv) m³.	Pertes de charges H mce	Vitesse à régler	Puissance absorbée (w)
2	UPS 40/30 F	5 m³	1,60 mce	1	80W
4	UPSD 32 / 80	2,8 m³	4,00 mce	2	185 W
5	UPSD 32 / 80	2,8 m³	5,00 mce	3	195 W
19	TP 25 / 50 /2	1,5 m³	5,00 mce	monovitesse	0,06 kW 60 W

REPONSES

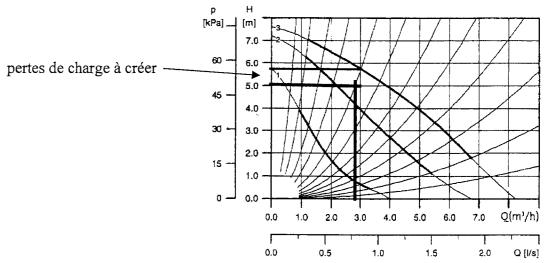

8.2: a

8.2 b

Courbes de performances UPSD 32/80



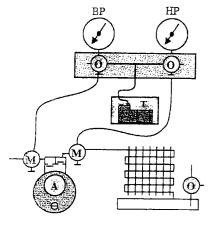
Courbes de performances UPS 40/30



Vitesse	P, (W)	In (A)	Label énergie	Raccords (mm)	Entraxe (mm)	PN
3	195	0,86	E	G2	180	6/10
2	185	0,82	E	G2	180	8/10
1	130	0,61	E	G2	180	6/10

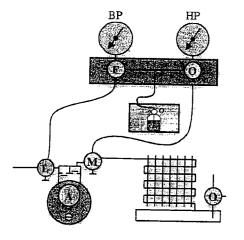
Pompe 5	Vitesse réglée	Débit	Hm lue sur la courbe	Perte de charge à créer
GRUNDFOS	3	2,8 m ³ /h	5,8 mc.e	0,7 à 0,8 mc.e

8.4/ Pompe de charge; repère 2 Elle alimente en eau de chauffage la bouteille de découplage au primaire. Elle permet de relever la T° du retour pour éviter le Pt de rosée. Son débit est supérieur au débit nécessaire au secondaire


Pompe de bouclage ; repére 19 Pompe de bouclage sanitaire. Son corps est en bronze ou en inox

Code examen : 45022708	B.P. Monteur en installations de génie climatique	E.1 Epreuve écrite	S. 2010	DC5/6
------------------------	---	--------------------	---------	-------

QUESTION N° 9


FROID MISE EN SERVICE

REPONSES

Etape A situation n°3.....

Etape B situation n°9......

Etape C situation n°

.....10.....

QUESTION Nº 10

FROID .Analyse d un fonctionnement

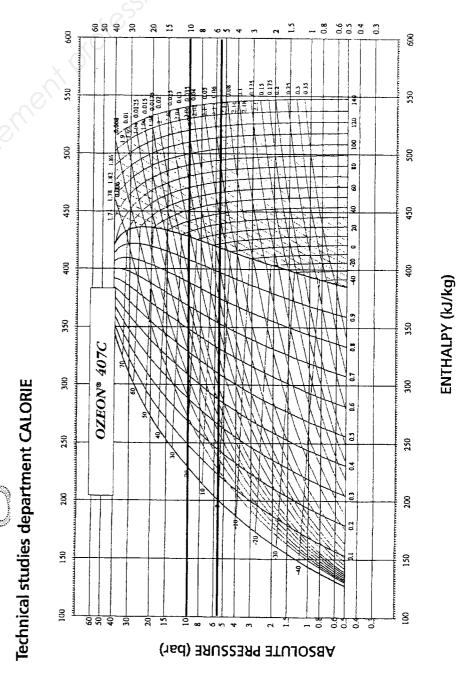
REPONSES

10.1/

Température d'entrée:...7 °C

température de sortie

12 °C


10.2/ renseigner le tableau questionnaire suivant :

La BP est la pression qui réside uniquement dans:

Aval compresseur		non
Dans le condenseur		non
Dans l'évaporateur	oui	
En amont du détendeur		non

11./1 tracer sur le diagramme enthalpique du 407 C les droites isobares correspondantes aux pressions du relevé.

11/2 définir les température HP et BP sur la courbe de saturation vapeur 100%. Température HP: ...+25 °C Température BP: +10...°C (+/-1°)

Code examen : 45022708 B.P. Monteur en installations de génie climatique E.1 Epreuve écrite S. 2010 DC6/6