

Ce document a été numérisé par le <u>CRDP de Caen</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

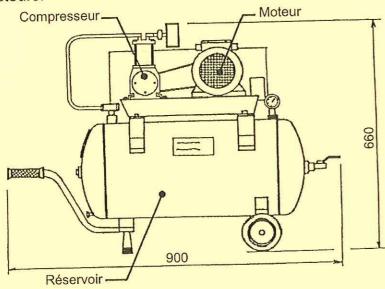
BEP DES METIERS DE LA PRODUCTION MECANIQUE INFORMATISEE

EP1: Analyse et exploitation des données techniques

DOSSIER TECHNIQUE

Documents	
Niise en situation et Présentation du compresseur	DT1
Dessin d'ensemble en perspective et en éclaté	DT2
Dessin d'ensemble	DT3
Dessin de définition de la poulie et du palier	DT4
Documentation technique	DT5
•	

Note aux candidats :


L'ensemble des documents sera remis à la fin des épreuves. Il est conseillé de répondre aux questions dans l'ordre.

	Session		Facultatif : code	
	20	10		
Examen et spécialité				
BEP Métiers de la productio	n mécanique info	rmatisée		
Intitulé de l'épreuve				
EP1 Analyse et exploitation	de données techi	niques		N° de page / total
Type	Facultatif: date et heure	Durée	Coefficient	The second second second
DOSSIER TECHNIQUE		4H00	4	DT 0
DOSSIER LECHNIQUE				

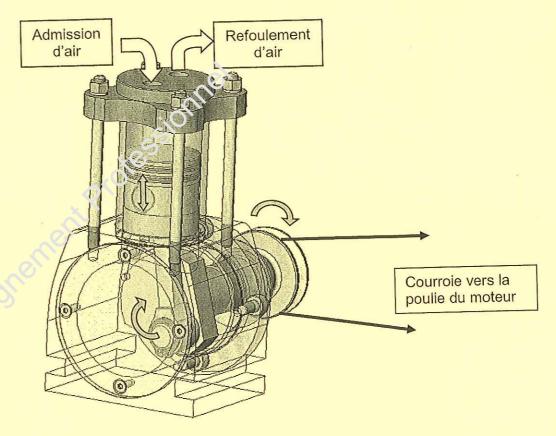
COMPRESSEUR

1) Mise en situation

Le compresseur d'air représenté sur le dessin d'ensemble DT3 est destiné à alimenter une petite centrale de production d'air comprimé schématisée ci-contre. Son très faible encombrement et ses caractéristiques optimales permettent une utilisation dans de très nombreux secteurs.

Spécifications:

- Ce compresseur est constitué d'un seul piston de diamètre 34 mm.
Son débit d'air est estimé à 37,5 l/mn à pression atmosphérique pour une fréquence de rotation de 1500 tr/mn.
Le cylindre est en acier mais sera réalisé en polycarbonate pour le prototype.


La culasse, le corps et le piston sont en alliage d'aluminium.

- Le moteur électrique développe une puissance de 1,1 KWatt à 3000 tr/mñ.
- La contenance du réservoir est de 70 litres.
- Equipements :
 - Dispositifs de mise à l'air de la canalisation pour démarrage à vide.
 - Soupape de sécurité.
 - Robinet de purge pour le réservoir.
 - · Manomètre de 12 bars.
 - Clapet anti-retour d'admission et de refouiement.
- Modes de fonctionnement : Marche manuelle ou automatique entre 6 et 8 bars par contacteur manométrique.

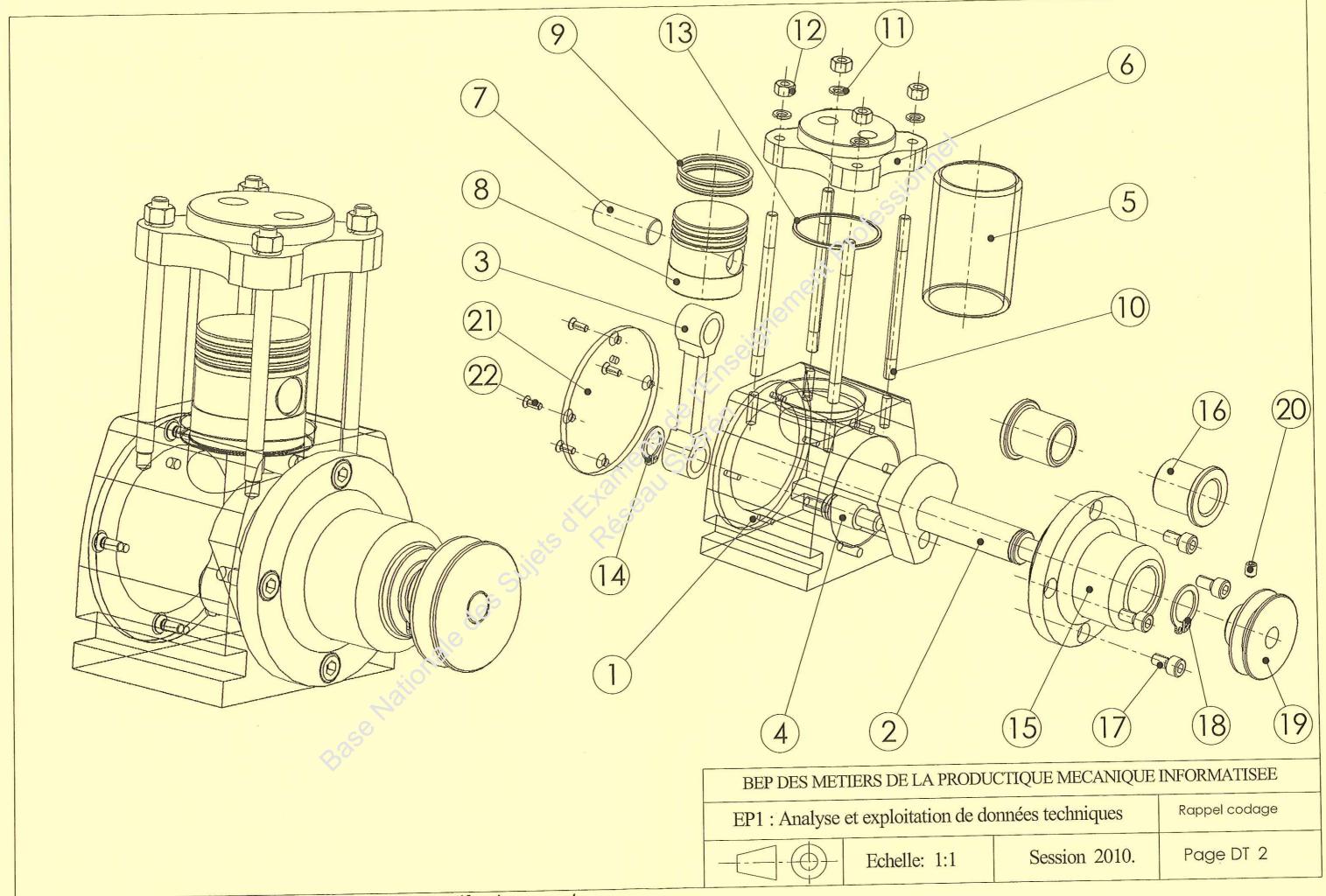
2) Problématique

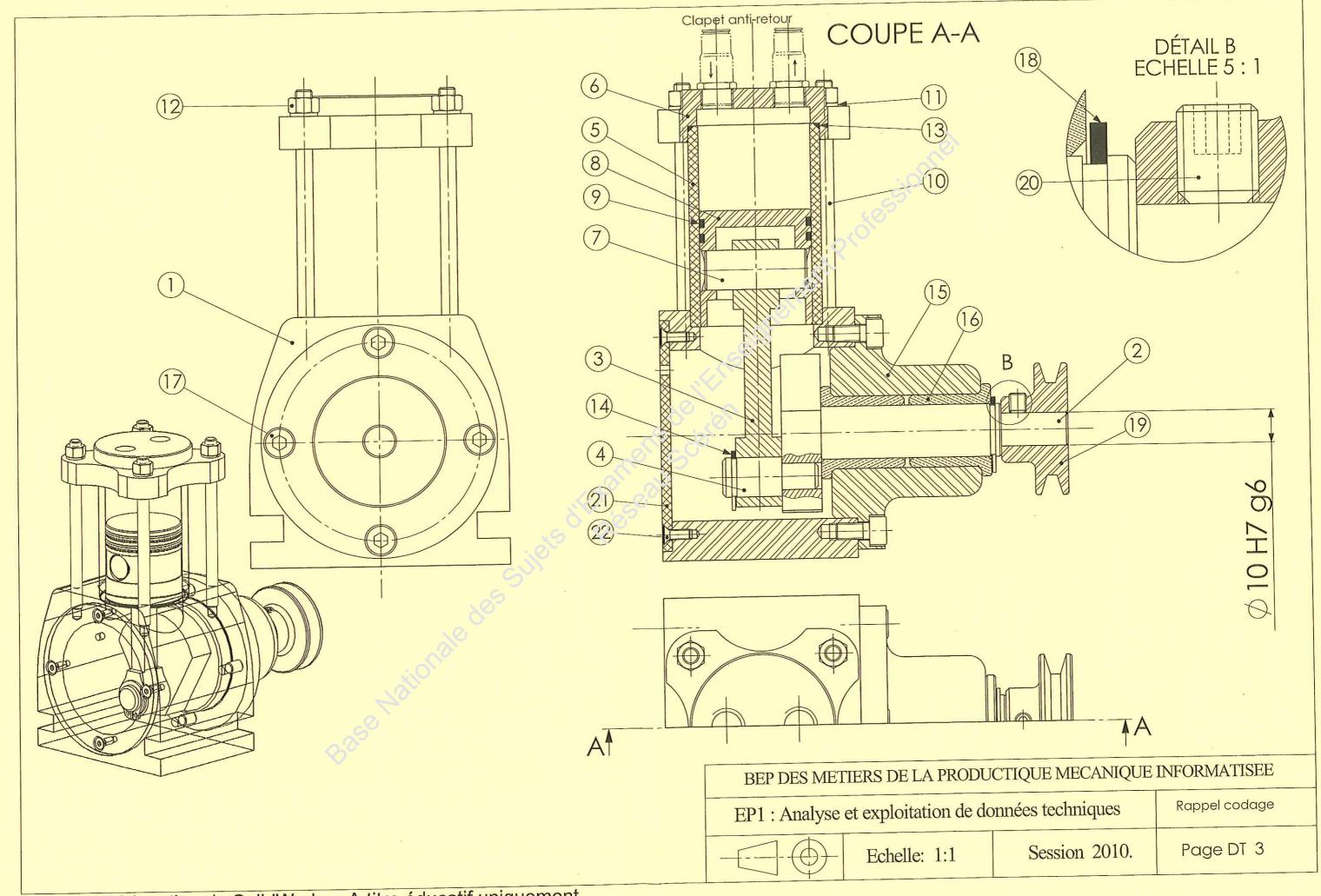
Le service maintenance nous fait part d'une casse répétée de la courroie de transmission. Le service qualité décide de palier à ce défaut.

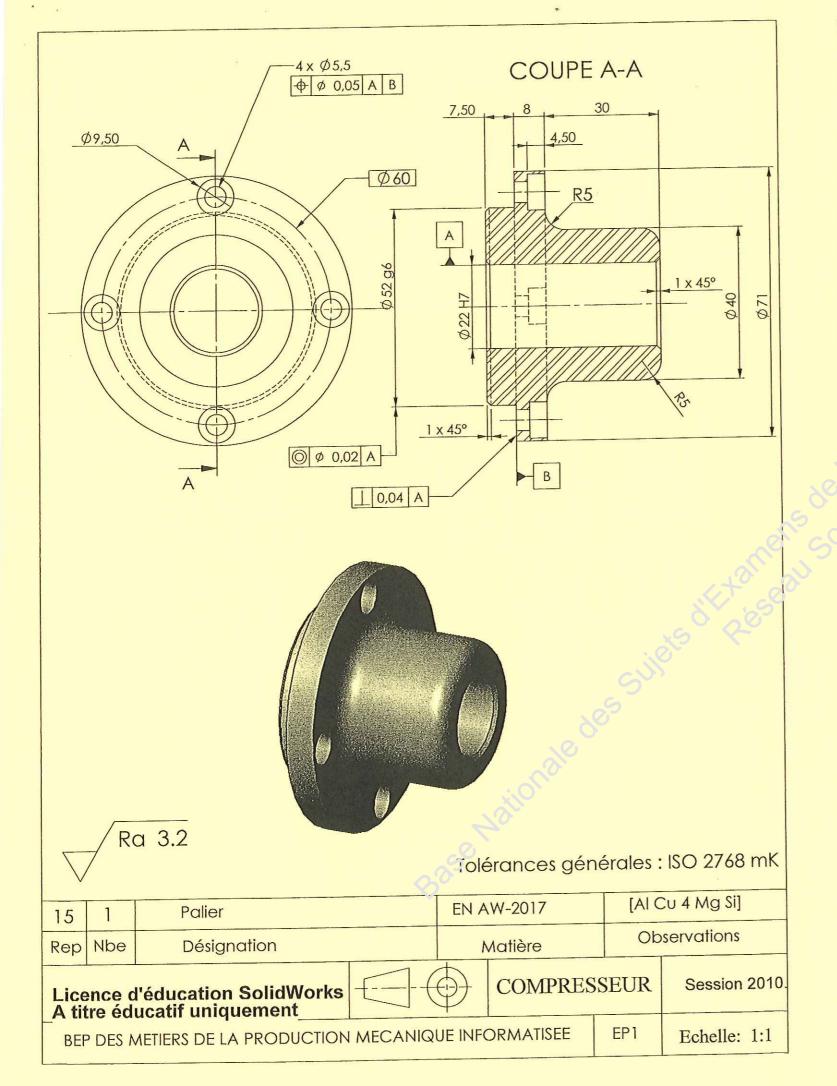
3) Présentation du système

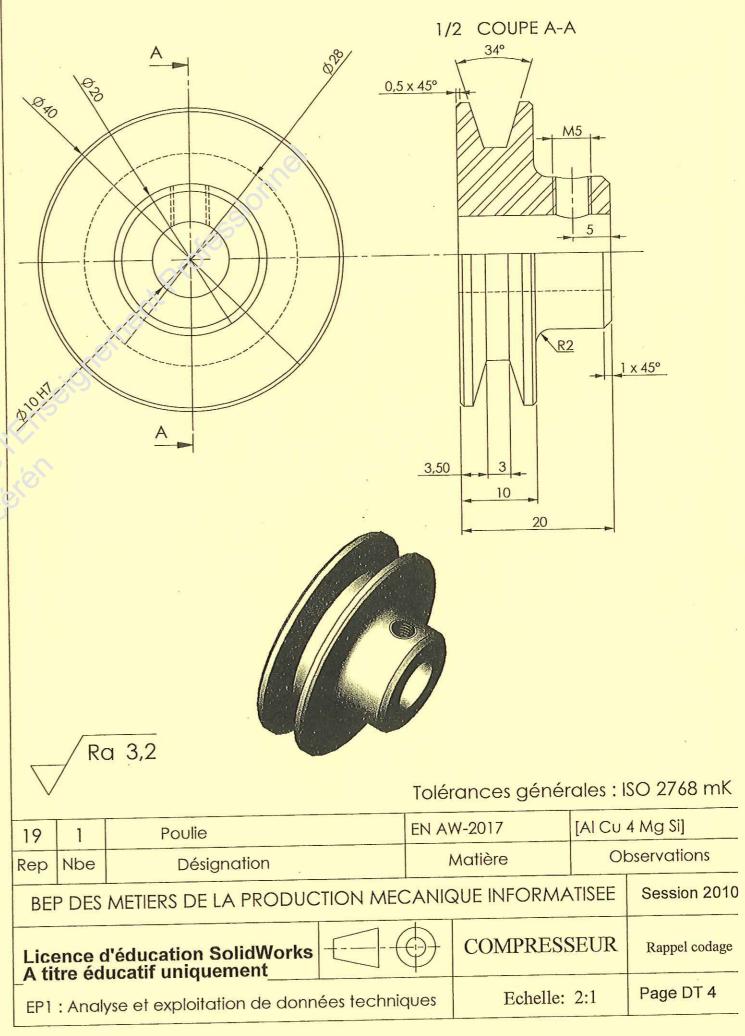
Le compresseur permet de transformer une énergie mécanique en énergie pneumatique. En parallèle, l'air aspiré en entrée à la pression atmosphérique sera refoulé en sortie sous pression.

Lorsque le vilebrequin (2) est entraîné en rotation par le moteur, l'ensemble biellemanivelle (3+4) transforme et transmet au piston (8) un mouvement de translation verticale alternée.


La descente du piston a pour effet "d'aspirer" l'air extérieur à la pression atmosphérique par le clapet d'admission.


Lorsque le piston arrive à son point mort bas, l'air n'est plus aspiré et le clapet d'admission qui était ouvert se referme.


Le piston (8) remonte, "comprimant" l'air qui a été aspiré.


Lorsque la pression d'air à l'intérieur du cylindre (5) atteint la pression limite du clapet de refoulement, le clapet s'ouvre et l'air est "refoulé" vers le réservoir.

The state of the s	Rappel codage
BEP Métiers de la production mécanique informatisée	DT1
EP1 Analyse et exploitation de données techniques	

DOSSIER TECHNIQUE

Tolérances ISO pour ajustements (NF EN 286 - ISO 8015)

Elles définissent un ensemble de tolérances concernant la taille linéaire d'un élément (diamètre d'un cylindre, diamètre d'une sphère, distance entre deux surfaces planes parallèles opposées).

Extrait de tableau des principaux écarts en micromètres :

Alésages	Jusqu'à 3 inclus	3 à 6 inclus	à 10 inclus	10 à 18 inclus	18 à 30 inclus	30 à 50 inclus	50 à 80 inclus	80 à 120 inclus
D10	+ 60 + 20	+ 78 + 30	+ 98 + 40	+120 +50	+ 149 + 65	+ 180 + 80	+ 220 + 100	+ 260 + 120
. F7	+ 16 + 6	+ 22 + 10	+ 28 + 13	+ 34 + 16	+ 41 + 20	+ 50 + 25	+ 60 + 30	+ 71 + 36
G6	+8+2	+ 12 + 4	+ 14 + 5	+ 17 + 6	+ 20 + 7	+ 25 + 9	+ 29 + 10	+ 34 + 12
Н6	+ 6	+ 8	+ 9	+ 11	+ 13	+ 16	+ 19	+ 22
Н7	+ 10	+ 12	+ 15 0	+ 18	+ 21	+ 25	+ 30	+ 35
H8	+ 14	+ 18	+ 22	+ 27	+ 33	+ 39	+ 46	+ 54
. H9	+ 25 0	+ 30	+ 36	+ 43	+ 52	+ 62	+ 74 0	+ 87 0
H10	+ 40	+ 48	+ 58	+ 70 0	+ 84	+ 100	+ 120 0	+ 140 0

Arbre	Jusqu'à 3 inclus	à 6 inclus	6 à 10 inclus	10 à 18 inclus	18 à 30 inclus	30 à 50 inclus	50 à 80 inclus	80 à 120 inclus
f6	- 6	- 10	- 13	- 16	- 20	- 25	- 30	- 36
	- 12	- 18	- 22	- 27	- 33	- 41	- 49	- 58
. f7	- 6	- 10	- 13	- 16	- 20	- 25	- 30	- 36
	- 16	- 22	- 28	- 34	- 41	- 50	- 60	- 71
f8	- 6	- 10	- 13	- 16	- 20	- 25	- 30	- 36
	- 20	- 28	- 35	- 43	- 53	- 64	- 76	- 90
g5	- 2	-4	- 5	- 6	- 7	- 9	- 10	- 12
	- 6	-9	- 11	- 14	- 16	- 20	- 23	- 27
g6	- 2	- 4	- 5	- 6	-7	- 9	- 10	- 12
	- 8	- 12	- 14	- 17	-20	- 25	- 29	- 34
h5	0 - 4	0 - 5	0 - 6	0 -8	0 - 9	0 -11	0 - 13	0 - 15
h6	0 - 6	0 - 8	0 - 9	0 -11	0 - 13	0 - 16	0 - 19	0 - 22
h7	0 - 10	0 - 12	0 - 15	0 - 18	0 - 21	0 - 25	0 - 30	0 - 35

Désignation de métaux non ferreux

Aluminium et alliages d'aluminium corroyés (NF EN 573)

La désignation utilise un code numérique. Il peut éventuellement être suivi, si cela est justifié, par une désignation utilisant les symboles chimiques des éléments et de nombre indiquant la pureté de l'aluminium ou la teneur nominale des éléments considérés. La teneur des éléments considérés n'est pas précisée si elle est inférieure à 1%.

Exemples de désignations usuelles :

EN AW-7049 ou EN AW-7049 [Al Zn 8 Mg Cu].

Alliage d'aluminium - Zinc 8% - Magnésium - Cuivre.

Exemple de désignation exceptionnelle :

EN AW-Al Zn 8 Mg Cu.

	Symbole	s chimique	s intern	ationnaux	
Elément d'alliage	Symbole chimique	Elément d'alliage	Symbole chimique	Elément d'allage	Symbole chimique
Aluminium	AI	Cobalt	Co	Nickel	Ni
Antimoine	Sb	Cuivre	Cu	Niobium	Nb
Argent	Ag	Etain	ôit	Plomb	Pb
Bérylium	Be	Fer	Fe	Silicium	Si
Bismuth	Bi	Galliuir	Ga	Strontium	Sr
Bore	В	Lithium	Li	Titane	Ti
Cadmium	Cd	Magnésium	Mg	Vanadium	v
Cérlum	Ce	Manganèse	Mn	Zinc	Zn
Chrome	Cr	Molybdène	Мо	Zirconium	Zr

Tolérances générales (ISO 2768):

L'utilisation des tolérances générales a pour objet de permettre le tolérancement complet d'une pièce tout en évitant d'inscrire un nombre trop important de spécifications.

Les tolérances plus petites que les tolérances générales sont indiquées individuellement. Les tolérances plus grandes que les tolérances générales ne sont indiquées que s'il peut en résulter une réduction des coûts de fabrication.

Elles s'appliquent aux dimensions linéaires et aux tolérances géométriques.

Écarts pour éléments usinés NF EN 22768 – ISO 2788

DIMENSIONS LINEAIRES						TANDAMA OF LIBERTY	ES CAS		DIMENSIONS ANGULAIRES Dimension du côté le plus court				
Classe de précision	C,5 à 3 inclus	3 à 6	6 à 30	30 à 120	120 à 400	0,5 à 3 inclus	3 à 6	> 6	Jusqu'à 10	10 à 50 inclus	50 à 120	120 à 400	
f (fin)	± 0,05	± 0,05	± 0,1	± 0,15	± 0,2	± 0,2	± 0,5	± 1	± 1	± 30°	± 20°	± 10°	
m (moyer.)	± 0,1	± 0,1	± 0,2	± 0,3	± 0,5	± 0,2	± 0,5	± 1	± 1	100			
c ('a.'ge)	± 0,2	± 0,3	± 0,5	± 0,8	± 1,2	± 0,4	± 1	± 2	± 1°30′	±1°	± 30°	± 15°	
v (t. ès large)	2	± 0,5	± 1	± 1,5	± 2,5	± 0,4	± 1	± 2	± 3°	± 2°	±1°	± 30°	

TOLERANCES GEOMETRIQUES												
Tolérances	— 							Description of the Control of the Co			111	
Classe de précision	Jusqu'à 10	10 à 30 inclus	30 à 100	100 à 300	300 à 1000	Jusqu'à 100	100 à 300	300 à 1000	Jusqu'à 100	100 à 300	300 à 1000	Toutes dimensions
H (fin)	0,02	0,1	0,1	0,2	0,3	0,2	0,3	0,4	0,5	0,5	0,5	0,1
K (moyen)	0,05	0,1	0,2	0,4	0,6	0,4	0,6	0,8	0,6	0,6	0,8	0,2
L (large)	0,1	0,2	0,4	0,8	1,2	0,6	1	1,5	0,6	1	1,5	0,5
11	0 0											
Même valeur tolérance dimensionne de rectitude planéité si el sont supérie	Même valeur que la tolérance connelle ou diamétrale mais à condition de ou de de rester inférieure à la tolérance de battement.								carts de co es toléranc			tés

BEP Métiers de la production mécanique informatisée	Rappel codage
FP1 Analyse et exploitation de données techniques	DT5