

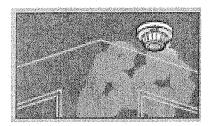
Ce document a été numérisé par le <u>CRDP de Lille</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

BEP DES METIERS DE L'ELECTROTECHNIQUE

Epreuve EP1 COMMUNICATION TECHNIQUE

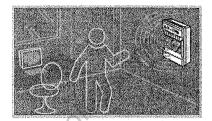
GOLF DE BORDEAUX LAC


DOSSIER RESSOURCES

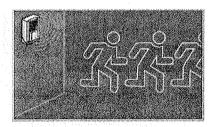
METROPOLE - MAYOTTE - REUNION	Session 2	010 Co	ode examen : 25509					
BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE								
EP1 COMMUNICATION TECHNIQUE								
DOSSIER RESSOURCES	Durée : 4 heures	Coefficient : 4	Page : DR 1/14					

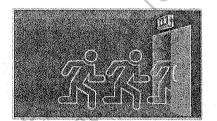
La sécurité dans les bâtiments :

La protection des personnes et des biens est primordiale dans les établissements accueillant du public et/ou des travailleurs. Legrand vous explique le déroulement de la mise en sécurité des personnes et du bâtiment.

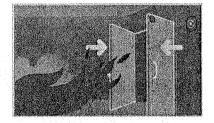

Détecter et signaler : Détecter le feu au plus tôt et signaler sa localisation au personnel de surveillance pour effectuer les opérations nécessaires à la mise en sécurité des personnes et pour limiter les dégâts dans le bâtiment.

Détection de la fumée par le détecteur


Appui sur le déclencheur manuel

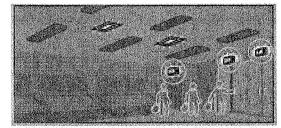

Transmission sonore et visuelle

Mettre en sécurité :

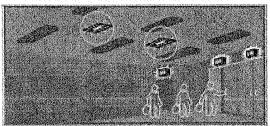

- Evacuer : Informer le public à l'aide de signaux visuels et sonores
- <u>Compartimenter</u>: Limiter la propagation du feu, des fumées pour faciliter l'évacuation du public.

Signalisation sonore

Signalisation visuelle


Fermeture des portes coupe-feu grâce aux ventouses électromagnétiques

L'éclairage de sécurité


Une installation d'éclairage de sécurité est obligatoire dans tous les établissements recevants du public (ERP)

L'éclairage de sécurité a 2 fonctions :

 <u>L'éclairage d'évacuation</u>: Permet l'évacuation du public en assurant l'éclairage des cheminements, des sorties, des obstacles, des changements de directions et des indications de balisage.

L'éclairage d'ambiance ou anti-panique: Permet de maintenir un éclairage uniforme pour garantir la visibilité et éviter tous risques de panique.

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 2/14

2 types d'éclairages de sécurité : 2 technologies possibles.

	Blocs autonomes d'éclairage de sécurité (BAES	Luminaires sur source centralisée (LSC)
Performences	Flux lumineux des BAES d'évacuation : 45 lm Autonomie : 1 h	Flux lumineux des BAES d'évacuation : 45 lm Autonomie : 1 h
Eclairage d'évacuation	BAES:	LSC : • à incandescence • à fluorescence
Eclairage d'ambiance	BAES : • à incandescence • à fluorescence de type non permanent	LSC : • à incandescence • à fluorescence

Les BAES s'utilisent, en général, dans tous les types d'établissements sauf cas réglementaires. L'installation des LSC est réalisée quand l'effectif est supérieur à 700 personnes.

L'installation électrique communicante :

Une installation électrique communicante permet de piloter de façon simple et confortable l'ensemble de l'éclairage, des volets, du chauffage etc...

Principe de fonctionnement :

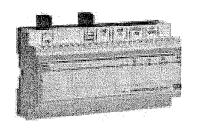
Le câblage d'une installation communicante prévoit la mise en place de deux circuits séparés. Le circuit de puissance distribue l'énergie, tandis que le circuit de commande véhicule les informations entre les émetteurs d'ordres (poussoirs, télècommandes, capteurs ...) et les récepteurs d'ordres (modules de sorties) qui commutent les charges. Le fonctionnement de l'installation est défini par programmation.

Composants systèmes et accessoires :

L'installation électrique communicante comprend des produits bus filaires et radio pour s'adapter aussi bien aux installations neuves qu'à la rénovation.

Configurateur:

Produit radio, c'est l'outil utilisé pour la programmation de l'ensemble de l'installation que celle-ci soit filaire, radio ou mixte. Le dialogue et le téléchargement avec les produits filaires s'effectuent grâce au coupleur de média.


Configurateur

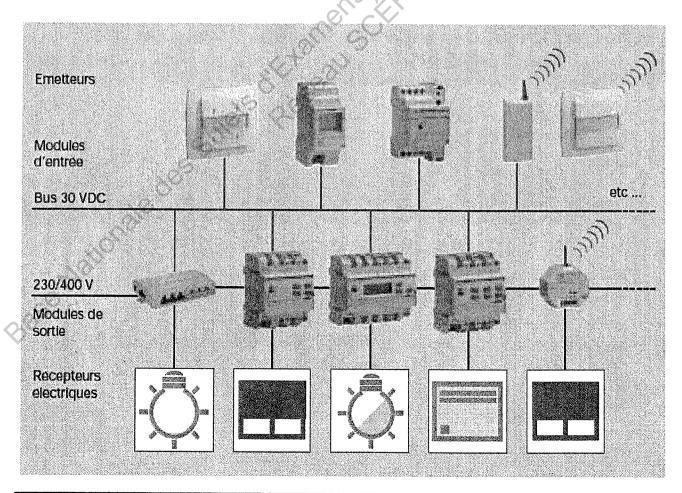
Coupleur de média

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	·
DOSSIER RESSOURCES	Page: DR 3/14

Alimentation:

Elle fournit la tension 29 V DC du bus.

Alimentation


Les produits de sortie :

Ils assurent la commande des équipements électriques à partir des ordres émis par les produits d'entrée. Les produits de sortie permettent de commander tous types d'équipements pilotables en TOR ou en variation (éclairage, prises commandées, roulants, stores)

Le principe de l'installation :

Tous les émetteurs d'ordres (produits d'entrée) et les récepteurs d'ordres (produits de sortie) sont des produits communicants.

- les produits d'entrée réagissent à l'ordre marche/arrêt d'un bouton poussoir, mesurent la variation de la température ambiante, le niveau de luminosité ...
- Ils traitent ces informations, puis envoient les ordres correspondants aux produits de sortie par le câble Bus ou par radio.
- un coupleur de média fait office de passerelle entre les produits radio et les produits filaires bus.
- les produits de sortie (interface de puissance) réceptionnent et exécutent les ordres qui leurs sont destinés (allumage de la lampe, montée des volets, alimentation du convecteur).

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 4/14

Interrupteurs crépusculaires programmables - cellules

Les interrupteurs crépusculaires programmables permettent l'allumage et l'extinction d'un circuit d'éclairage en fonction de la luminosité et d'une programmation horaire pour les applications d'éclairage de vitrines, enseignes lumineuses, éclairage de jardin...

L'éclairage sera allumé au coucher du solell et éteint au lever du solell.

Durant la nuit, par exemple de 1h à 4h du matin, il est possible d'éteindre l'éclairage grace à la programmation horaire. Deux principes permettent de connaître les heures de lever et de coucher du soleil :

 par une mesure de la luminosité extérieure avec une cellule photo-résistante pour les EE 110 et EE 171

- par calcul des heures de lever et de coucher du soleil en fonction de la date du jour et de la position géographique de l'installation pour l'horloge astronomique EE 180. Cette solution présente l'avantage d'aucune installation de cellule à l'extérieur.

El caracteristiques détallées, von pages G.89 et G.90

EE 110

Interrupteurs crépusculaires programmables

livre avec : cellule saillle EE 003 programmateur journalier electromecanique

programmateur hebdomadaire électronique

sortle : 1 contact inverseur 16 A - 250 V ~ AC 1 lampe a incandescence : 2000 W sensibilité : 2 gammes

- 5 à 100 lux - 50 à 2000 lux EE 110 225110

F

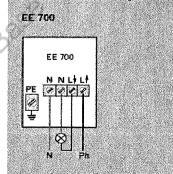
EE 171 225171

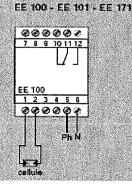
EE 003

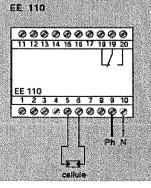
Cellules photo-résistantes

cellule à encastrer livrée avec cable 1 m (2 x 0.75°)

cellule en saillie raccordement 0,75 à 4º


distance maxi, entre cellule et boitier : 50 m.


EE 002 225002


225002

EE 003 225003

Presentation EE 100 - EE 101 EE 171 EE 110 ① 2 2 5 8 3 3 0 0 Q 5 4 4 4 Potentiomètre pour le règlage du seuil de luminosité
 Commutateur pour la sélection de la gamme de luminosité Visualisation de l'état de la sortie Possibilité de plombage Programmateur electronique 3 Commutateur pour la sélection des forçages permanents marche ou arret, du mode automatique ou du mode test Programmateur électromécanique Raccordement électrique

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010			
EP1 COMMUNICATION TECHNIQUE				
DOSSIER RESSOURCES	Page: DR 5/14			

Désignation des câbles :

Il existe actuellement deux codes en vigueur : le code UTE (Union Technique de l'Electricité) et le code CENELEC (Comité Européen de Normalisation ELECtrotechnique) (qui remplace progressivement le code UTE).

[]:	16				
Signification du symbole	Symbole	ļ		Symbole	Signification du symbole
Série Harmonisée	H				
Série nationale	Α		_ TYPE DE	U	Câble faisant l'objet d'une
reconnue			SERIE		
Série nationale autre	N				norme UTE
que reconnue					
300∨	03	_	TENSION		
300 / 500V	05	`	NOMINALE -	250	250V
450 / 750V	07			500	500V
600 / 1000V	1			1000	1000∨
PVC	V	←		Absence	A
Caoutchouc vulcanisé	R		SOUPLESSE	de lettre	Ame rigide
Polyéthylène réticulé	X		→ ET NATURE → DE L'AME	S	Ame souple
Ruban en acier	D		DE L'AIME	Absence	
ceinturant les				, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	\@\`
conducteurs					Cuivre
PVC	V			de lettre	
Caoutchouc vulcanisé	R				
Polychloroprène	N	 ←	ENIVER OPPE	A	Aluminium
	Absence		ENVELOPPE ->	C	Caoutchouc vulcanisé
Câble rond	de lettre		ISOL/II(IL	R	Polyéthylène réticulé
Câble méplat divisible	Н		· 01	-V	Polychlorure de vinyle
Câble méplat non	H2		90		Isolant minéral
divisible	112.		BOURRAGE ->	2.	isolant illineral
311.3.3.3				G	Gaine de bourrage
	Absence		~ CY	0	Aucun bourrage ou
Cuivre	de lettre	{ -	011	U	bourrage ne formant pas
		14	GAINE DE		une gaine
Aluminium	_A	<u> </u>	_ PROTECTION → NON	1	Gaine d'assemblage et de
, administr	', (D	METALLIQUE	•	protection formant un
	xS	5'			bourrage
Rigide, massive, ronde	Ú*		DESTRUCTION AND INC	2	Gaine de protection épaisse
Rigide, câblée, ronde	R*		REVETEMENT >	Č	Caoutchouc vulcanisé
Rigide, câblée, sectorale	_s*		MEIMELIQUE	N	Polychloroprène ou
rugido, odbioo, odbiolaio				• •	équivalent
Rigide, massive,	_W*			٧	PVC
sectorale	_**		FORME	V	1, 10
Souple, classe 5, pour	_K		— DU → CÂBLE		
installation fixe	-'`		CHIDEAL	Р	Gaine de plomb
Souple, classe 5	_F			F	Feuillard en acier
Souple, classe 6	_ <u>'</u> H			Z	Zinc ou autre métal
La désignation peut être					Zinc ou autre metal
complétée par l'indication				Absence	Câble rond
éventuelle d'un conducteu	ir vert /			de lettre	
jaune dans le câble :	n voit/			М	Câble méplat
câble sans vert ja	unain				
X S	u110 . 11				
câble avec vert ja	unern				
G S	une.n				
n : nombre de conducteur					
S : section			:		
U . 3EUIIUII					

^{* :} pour les câbles à âmes en aluminium, le tiret précédent le symbole est à supprimer.

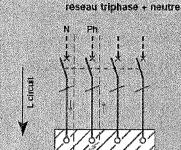
BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 6/14

Choix des disjoncteurs - courts-circuits - longueurs :

Protection contre les courts-circuits mini-

Un court-circuit peut se produire à l'extremité d'une ligne. Dans ce cas. Il faut prendre en compte le courant le plus défavorable. c'est-à-dire le courant de court-circuit mini, comme l'indique la figure ci-contre. Les conditions d'installation consistent à vérifier que le dispositif de protection placé à l'origine de la ligne coupe l'ik minidans un temps déterminé, avant la déterioration des conducteurs et de l'Installation, et ceci d'après les conditions suivantes :

Irm < lk mini pour les disjoncteurs la < lk mini pour les fusibles


Irm : courant de fonctionnement du magnétique la : courant de fusion du fusible pour un temps de 5 secondes

Dans la pratique, il suffit de verifier L. circuit < L.max.

Les tableaux ci-dessous donnent les longueurs maxi (en mètres) protégées contre les courts-circuits, en fonction des critères suivants ;

- conducteurs en cuivre
- réseau triphasé + neutre 230/400 V et Section neutre = S, phase
- type et calibre du dispositif de protection

reseau triphase

lk biphase

Pour des caractéristiques différentes, multiplier les valeurs des tableaux par les coefficients C sulvants :

- C = 1,33 ; si. S. neutre = 0,5 S phase en entrant dans le tableau par la section du neutre
- C = 1,73 ; si le neutre n'est pas distribué
- C = 0.42 : si les conducteurs sont en aluminium et protegés par fusibles.
- C = 0.63 : si les conducteurs sont en aluminium et protégés par disjoncteurs.

Pour les tableaux C8 et C9 concernant les fusibles, lorsque 2 valeurs sont indiquées (ex. : 59/61) :

la 1™ concerne les cables Isoles au PVC : A/H05V..., A/H07V... la 2^{um} concerne les câbles isolés au caoutchouc, au PR, EPR; A/H07R..., H07Z..., H07G.... L/1000R....

Tableau C4 - Protection par disjoncteurs type B

section												
(mm²)	Ĝ	10	16	20	25	32	40	50	63	80	100	
1,5	200	120	75	60	48	37	30	24	19	15	12	
2,5	333	200	125	100	80	62	50	40	32	25	20	
4	533	320	200	160	128	100	80	64	51-	40	32	
6	800	480	300	240	192	150	120	96	76	65	48	
10		800	500	400	320	250	200	160	127	100	80	
16			800	640	512	400	320	256	203	160	128	
25					800	625	500	400	317	250	200	
35	L max.	en mètres				875	700	560	444	350	280	
50								760	603	475	380	

Tableau C5 - Protection par disjoncteurs type C

section	courant assigné des disjoncteurs type C (A)											
(mm²)	6	10	16	20	25	32	40	50	63	80	100	
1,5	100	60	37	30	24	18	15	12	. 9	7	6	
2,5	167	100	62	50	40	31	25	20	16	12	10	
4	267	160	100	80	64	50	40	32	25	20	16	
6	400	240	150	120	96	75	60	48	38	30	24	
10	667	400	250	200	160	125	100	60	63	50	40	
16		640	400	320	256	200	160	128	101	80	64	
25			625	500	400	312	250	200	159	125	100	
35	L. max.	en mètres	875	700	560	437	350	280	220	175	140	
50					760	594	475	380	301	237	190	

Tableau C6 - Protection par disjoncteurs type D

section (mm²)	courant assigné des disjoncteurs type D											
	6	10	16	20	25	32	40	50	63	80	100	
1,5	50	30	18	15	12	9	7	6	5	4	3	
2,5	83	50	31	25	20	16	12	10	8	6	5	
4	133	80	50	40	32	25	20	16	13	10	8	
6	200	120	75	60	48	37	30	24	19	15	12	
10	333	200	125	100	80	62	50	40	32	25	20	
16	533	320	200	160	128	100	80	64	51	40	32	
25	833	500	312	250	200	156	125	100	79	62	50	
35		700	437	350	280	219	175	140	111	87	70	
50			594	474	380	297	237	190	151	119	95	
		\$100 Section 11 above						1004				

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 7/14

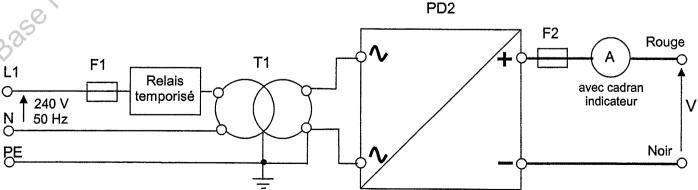
Choix des disjoncteurs :

Disjoncteurs divisionnaires multipolaires nouveau NEN, NFN: "B" - "C" 6000 - 10 kA Courbes "B", "C" 6000 Courbes de déclenchement : Usage: Conformes aux normes EN 60898-1 "B" réglage magnétique entre locaux professionnels EN 60898-1 (NF C 61-410) 3 et 5 In, (NF C 61-410) 10 kA "C" reglage magnetique entre Capacité de raccordement : homologues de 0.5 à 63 A IEC 60947-2 5 et 10 In. - 25º fil souple, courbes "B" in de 6 à 63 A □ ocuvoir de coupure et courb voir pages E 14 à F 48 35° fil rigide. "C" in de 0,5 à 63 A Désignation In / A Larg. en 🛚 Ref. c'* / Ref. num. 17.5 mm courbe B courbe C Disjoncteurs unipolaires 0,5 MEN 1001 462791 NEW YOU 462792 2 NFM 102 462793 3 NFN 1031 462794 4 MFN (04% 462795 6 Meneroe NEW YORK 461951 462796 10 NEW 110° MED: 110 461952 462797 16 MEM HIST 461954 NEW 1161 462799 20 NEW 1291 NEW 120 462800 461955 25 MF14 1251 NFN 125" 462801 461956 32 KFN 1921 MEN 1321 461957 462802 **NFN 116** 40 MERE 1901 461958 MEN 1401 462803 50 NEM 1801 461959 MEN 150 462804 NEM (63: 461960) NFN 1001 462805 Disjoncteurs bipolaires 0,5 2 MFM 200 462806 2 P.P. 2 N7N 2011 462807 2 REFN 2021 462808 2 WEN LOST 462809 2 MEM 202 462810 2 NEN 2061 461966 MFM 208" 462811 10 2 NEN 210 461967 NFN 210* 462812 16 2 NEW 216 461969 NFN 216* 462814 2 MEN 2201 461970 NEN 220 462815 25 2 NEW 225* 461971 NFM 2251 462816 32 2 MEN 2321 461972 MFM 232". 462817 40 2 NEW 2401 461973 MFINZO 462818 2 NEW 2501 461974 NEM 250: 50 NFN 320 462819 63 7 RFM 2631 NEN 2631 461975 462820 Disjoncteurs tripolaires 6 3 MEN 3061 461981 RFM 306* 462826 10 MEN 3101 461982 MFM 3101 3 462827 16 3 NEN 115 461984 MEM 3161 462829 20 NEN 320 461985 NEN 3201 462830 25 MEN 226 462831 NED 125 461986 32 3 NEN 332* 461987 MFN 332 462832 40 3 NEN 340" 461988 NFN 340° 462833 50 NEN 350 461989 NFM 350 462834 63 3 MEM 363° NFN 363 461990 462835 Disjoncteurs tetrapolaires 6 4 MF14 406" 462841 NEW 406 461996 NFN 440 4 P.P. 10 NEN 410 NEN 410 461997 462842 16 MEN 4161 461999 RFN 416° 462844 20 NEN 4201 462000 HEN 420 462845 pour les auxiliaires de 25 MEN 425° 462001 NFN 425 462846 déclenchement, voir page F.43 32 NEM 432" 462002 NFN 432" 462847 NESI 440° 462003 40 METU 440° 462848 50 NEN 450" 462004 NFN 450" 462849 paur les blocs différentiels, * disponible 2^{sina} semestre 2006 63 MEN 450° 462005 NFN 463 462850 voir pages F.34, F.35

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 8/14

Chargeur industriel de batteries :

CHARGEUR Lestronic II:


Description:

Chargeur industriel automatique.
Caisson en métal résistant à l'impact.
Cadran indicateur de charge.
Temporisateur pour le temps de charge.
Robuste et durable, pour utilisation journalière intense.
Garantie 2 ans.

Listes des chargeurs pour batteries de voiturettes de golf :

ESTRONIC	; II					
Modèle	Tension (V)	Courant (A)	Longueur (cm)	Largeur (cm)	Hauteur (cm)	Masse (kg)
09610	12	60	20	22	23,3	32
9678	24	15	20	15	19	17
7210	24	30	20	22	23,5	32
7850	36	30	20	22	23,5	32

SCHÉMA ÉLECTRIQUE DU CHARGEUR :

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE Session 2				
EP1 COMMUNICATION TECHNIQUE				
DOSSIER RESSOURCES	Page: DR 9/14			

Disjoncteurs-moteurs magnétothermiques :

GV2 ME: commande par boutons poussoirs, GV2 P: commande par bouton tournant

des 50/	mot	eurs z en	orma tripha catég 500	isės orie /		690	V		plage de réglage des déclencheurs	courant de déclen- chement	référence	
P		Ics		lcu	lcs	P	lcu	Ics			e bornes	bornes
88339339	kΑ	1	A CONTRACTOR OF THE PARTY OF TH	kΑ	ASS, SSPAR (ASS		623.4366.53	(2)		ld ± 20 %		à ressort (5)
	•	\ - /		***	1-7		•	\- /	Ä	A	Ca viol (1)	a 1000011(0)
2. Salaki k	26602540							4 (C.S.)	0,10,16	1,5	GV2 ME01	GV2 ME013
									9, 111.0, 10		ou GV2 P01	OTE INCOID
0,0€	*	*							0,160,25	2,4		GV2 ME023
-,		• •							o, 101110,20		ou GV2 P02	O IL MEDEO
0.09	*	*						*************	0,250,40	5		GV2 ME033
0,00	, ,,								V,EGV,***		ou GV2 P03	O VE INLOSO
0,12) ·*	*				0,37	-	*	0,400,63	8		GV2 ME043
2,12	• • •	, ,				oja.			0,401.10,00	_	ou GV2 P04	W 12 111 LVTV
0,18	1 🕁	*							0,400,63	8	GV2 ME04	
0,10		/4							0,400,00		ou GV2 P04	
0,25		*				0,55	-4-	*	0,631	13		GV2 ME053
·,	^	**				Oşoc		~	0,001	~ ~	ou GV2 P05	GAT MEDOO
0,37	' valer	*	0,37	· +	*				11,6	22,5		GV2 ME063
Oş O i	~	^	Ojor	~	~				11,0		ou GV2 P06	G VZ INEUUS
0,55	-	*	0,55	-	*	0,75	-	*	11,6	22,5	GV2 ME06	
0,55	, ,		0,00	, ,	^	CFy F &	• ^		1 (3)		ou GV2 ME00	
			0,75	حقه	女	1,1	*	*	11,6	22,5	GV2 ME06	
			U ₁ 1 U	^	^	F, E	A	~ >	0,.1,0		ou GV2 P06	
0,75	4	*	1,1	*	*	1,5	3	75	1,62,5	33,5		GV2 ME073
$\frac{0,70}{0,75}$		^	1,1	*	*	1,5	8		1,62,5	33,5	GV2 P07	GVZ MEU/3
1,1		*	1,5	*	*	2,2	3	75	2,54	<u>55,5</u> 51		GV2 ME083
1,1	*	^	1,5	*	*	2,2	8		2,54	51 51	GV2 NIEU0 GV2 P08	GVZ WEU03
15	*	*	2,2	^	*	3	3	75	2,54	51		
1,5 1,5 2,2	*	^	2,2	*	*	3	8			51	GV2 ME08	····
22	*	*	3	50	100	4	3	75	2,54 46,3	78	GV2 P08	GV2 ME103
2,2	<u>^</u>	*	3	★ C	*	4	6		46,3	78	GV2 ME 10	G A S INIE 109
2,2 3 3 4 4 5,5	<u>^</u>	*	4.	10		5,5	3	75				ANA MEANA
3	*	<u>*</u>	4	50	100	5,5 5,5	6		610 610	138 138		GV2 ME143
3 A	*	*	5,5	10	100	$\frac{5,3}{7,5}$	3	75	610	138	GV2 P14	
4	*	*	5,5	50	100		6				GV2 ME14	
E E	15	50	7,5	6	75	7,5 9	3	75	610 914	138	GV2 P14	GV2 ME163
5,5 5,5	*	*	7,5	42	75	9	6	100		170 170	GV2 ME16	GVZ WE103
5,5	<u> </u>	/ K	1,3	42	10							
	<u> </u>					<u>11</u> 11	<u>3</u>	75	914	170	GV2 ME16	
7 =	4 E	EO	_		~y £~				914	170	GV2 P16	01/0 145000
7,5 7,5	15 50	50 50	9	6 10	75 75	15	3	75	1318	223		GV2 ME203
9	15	40	11			15		7E	1318 1723	223	GV2PE20	AND MEDIA
9				4	75 75	18,5		100	1723	327		GV2 ME213
	50 45	50	11	10	75 75	18,5	4	100	1723	327	GV2 P21	A) (0 14E000
11	15	40	15	4	75				2025	327	(4)	GV2 ME223
11	50	50	15	10	<u>75</u>			- <u></u>	2025	327	GV2 P22	
15	10	50	18,5	4	75	22	3	75	2432	416	GV2 ME32	-

GV2 ME

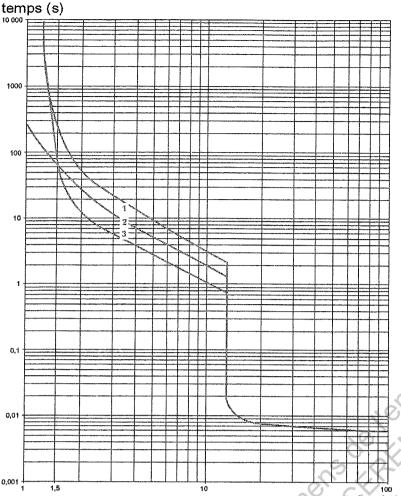
GV2 P

GV2 ME••3

- (1) GV2 ME fournis sous emballage collectif, voir annexes techniques.

50 50 **18,5** 10 75 **22** 4

- (2) En % de lcu. ★ > 100 kA.


 (3) Pour utilisation des GV2 ME en coffret, voir page xx.

 (4) Calibre maximal pouvant être monté dans les coffrets GV2 MC ou MP.
- (5) Pour le raccordement des conducteurs 1 à 1,5 mm² l'utilisation d'embouts réducteurs LA9 D99 est conseillée.

100 24...32

GV2 P32

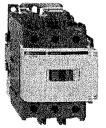
BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 10/14

Courbes de déclenchement magnétothermique des GV2 ME et GV2 P

Temps moyen de fonctionnement à 20 °C en fonction des multiples du courant de réglage

1:3 pôles à froid 2:2 pôles à froid 3:3 pôles à chaud

x courant de réglage (Ir)


Contacteurs:

LC1 D09**

LC1 D25++

LC1 D95--

Contacteurs tripolaires avec raccordement par vis-étriers, connecteurs ou bornes à ressort

Circuit de commande en courant alternatif, continu ou basse consommation

des n 50/60 (0 ≤ 6		triphase	šs .				en AC-3	contacts auxiliaires instantanés	repe fixal	mp ère	léte de l	r pa	r le	1 (1)				
	380 V 400 V	44512		50016	660V	*****	440 V	$\Lambda = I$	vis				res:	sort	No. No. of the	ons u	suelles	
kW	kW	kW	440 V kW	500 V kW	kW	1000 V kW	jusqu'à A	1 1							~		==	BC (3)
2,2	4	4	4	5,5	5,5		9	**************************************	LC1	DI	<u> </u>	(4)	LC.	D09 (4)	B7	P7	BD	BL
3	5,5	5,5	5,5	7,5	7,5		12		LC1	D	1200	(4)	LC.	D12300 (4) B7	P7	BD	BL
4	7,5	9	9	10	10		18		LC1	D'	1800	(4)	TC.	D183 (4) B7	P7	BD	BL
5,5	11	11	11	15	15		25		LC1	D:	25**	(4)	LC.	D253== (4) B7	P7	BD	BL
7,5	15	15	15	18,5	18,5		32		LC1	D:	3200	(4)	LC	D323++ (4) B7	P7	BD	BL
9	18,5	18,5	18,5	18,5	18,5		38		LC1	I D	38••	(4)	LC	D383•• (4) B7	P7	BD	BL
11	18,5	22	22	22	30	22	40		LC1	D	40 	(4)			B7	P7	BD	
15	22	25	30	30	33	30	50		LC1	D:	50 = =	(4)			B7	P7	BD	
18,5	30	37	37	37	37	37	65		LC1	D	35**				B7	P7	BD	
22	37	45	45	55	45	45	80		LC1	D	B0••				B7	P7	BD	
25	45	45	45	55	45	45	95		LC1	D	95••				B7	P7	BD	
30	55	59	59	75	80	75	115		LC1	D	115•	•			B7	P7	BD	
40	75	80	80	90	100	90	150		LC1	D	150-	•			B7	P7	BD	

(1)Tensions du circuit de commande préférentielles. Courant alternatif

 Volts
 24
 48
 115
 230
 400
 440
 500

 LC1 D09...D150 (bobines D115 et D150 antiparasitées d'origine)
 50/60 Hz
 B7
 E7
 FE7
 P7
 V7
 R7

 LC1 D40...D115
 FE7
 FE7
 V5
 R5
 S5

 50 Hz
 B5
 E5
 FE5
 P5
 V5
 R5
 S5

 60 Hz
 B6
 E8
 R6
 R6
 C
 C

 Courant continu
 voits
 12
 24
 36
 48
 72
 110
 220

 LC1 D40...D36 (bobines antiparasitées d'orkgine)
 U de 0,7...1,25 Uc
 JD
 BD
 CD
 ED
 SD
 FD
 MD

 LC1 D40...D95 U de 0,85...1,1 Uc
 JD
 BD
 CD
 ED
 SD
 FD
 MD

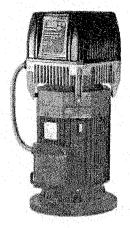
 U de 0,75...1,2 Uc
 JW
 BW
 CW
 EW
 SW
 FW
 MW

FD

MD

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 11/14

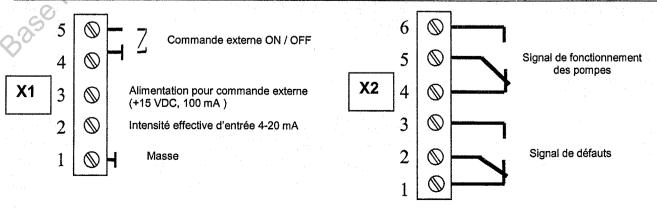
Lowara:


HYDROVAR est un dispositif de contrôle automatique qui, accouplé à un variateur de fréquence, permet de commander une ou plusieurs pompes en fonction de l'augmentation de la demande d'eau.

Montage sur le moteur, avec convertisseur de fréquence et console de programmation intégrée pour une puissance de 1,5 à 22 kW

5,5÷11,0 kW

1,5+4,0 kW



Caractéristiques techniques

H	YDROVAR	Tension d'alimentation	moteur	Calibre de	
modèle	Puissance nominale (kW)	(Fréquence de 40Hz à 60 Hz)	Tension	Courant (A)	protection (A)
HV 2.1	1,5	230 V, monophasée +/- 15 %	230 V triphasée	7	
HV 2.2	2,2	230 V, monophasée +/- 15 %	230 V triphasée	9	
HV 3.1	2,2	400 V, triphasée +/- 15 %	400 V triphasée	- 5	6.3
HV 3.3	3,0	400 V, triphasée +/- 15 %	400 V triphasée	7	6.3
HV 3.4	4,0	400 V, triphasée +/- 15 %	400 V triphasée	9	10
HV 3.5	5,5	400 V, triphasée +/- 15 %	400 V triphasée	12	14
HV 3.7	7,5	400 V, triphasée +/- 15 %	400 V triphasée	15	18
HV 3.11	11,0	400 V, triphasée +/- 15 %	400 V triphasée	22	25
HV 3.15	15,0	400 V, triphasée +/- 15 %	400 V triphasée	29	32
HV 3.18	18,5	400 V, triphasée +/- 15 %	400 V triphasée	35	50
HV 3.22	22,0	400 V, triphasée +/- 15 %	400 V triphasée	42	50
HV 3.30	30,0	400 V, triphasée +/- 15 %	400 V triphasée	60	80
HV 3.37	37,0	400 V, triphasée +/- 15 %	400 V triphasée	75	
HV 3.45	45,0	400 V, triphasée +/- 15 %	400 V triphasée	88	

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 12/14

Sécurité - réglementation :

Définitions des personnes habilitées :

Employeur

Assure la responsabilité légale de l'entreprise, désigne le personnel responsable et délivre le titre d'habilitation ainsi que le carnet de prescription.

Chargé de travaux.

Assure la direction effective des travaux ou des interventions (planification, suivi...), prend les mesures nécessaires pour veiller à sa propre sécurité et celle du personnel placé sous ses ordres, dans les domaines de la basse et haute tension.

Chargé de consignation.

Personne désignée par l'employeur pour effectuer tout ou partie de la consignation d'un ouvrage, et est chargée de prendre ou de faire prendre les mesures de sécurité qui s'imposent.

Chargé d'exploitation.

Personne désignée par l'employeur pour assurer l'exploitation d'un ouvrage électrique. C'est lui qui autorise l'accès aux ouvrages.

Exécutant électricien.

Cette personne peut accéder sans surveillance aux locaux réservés aux électriciens et exécuter des travaux d'ordre électrique ou non, et des manœuvres dans l'environnement des pièces nues sous tension. Elle doit veiller à sa propre sécurité.

Exécutant non électriciens.

Cette personne peut accéder sans surveillance aux locaux réservés aux électriciens, et effectuer des travaux d'ordre non électrique dans l'environnement des pièces nues sous tension.

Tableau des Habilitations :

HABILITATION DU PERSONNEL	Tensio	ux Hors on sans nage	Tensic	ıx Hors on avec nage	1	ıx Sous ision	intervention	
O DIE	ВТ	HT	ВТ	НТ	вт	НТ	ВТ	
Non- électricien	B0	НО	B0V	H0V				
Exécutant électricien	B1	H1	B1V	H1V	B1T	Н1Т	BR	
Chargé d'intervention							BR	
Chargé de travaux	B2	H2	B2V	H2V	B2T	H2T		
Chargé de consignation	ВС	нс					ВС	
Agent de nettoyage	2.0				BN	HN	li saga ki s	

L'habilitation BR entraîne pour son propre compte l'habilitation B2 et BC.

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 13/14

FORMULAIRE BEP METIERS DE L'ELECTROTECHNIQUE Formules inscrites au référentiel Formules fournies aux candidats pendant l'épreuve EP1

Lois Générales en continu

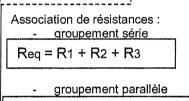
Lois Générales en alternatif

Lois sur le magnétisme et l'électromagnétisme

Energie :	Puissance :
W=Pt	P=UI
J W s	WVA

Loi de Joule : Loi d'ohm :
$$W = R I^2 t \qquad U = R I$$

$$J \mid \Omega \mid A^2 \mid s \mid V \mid \Omega \mid A$$


Résistivité, résistance :

$$R = \rho \quad L / s$$

$$\Omega \quad \Omega \quad m \quad m^{2}$$

$$R_{\theta} = R_{0} (1 + a \quad \theta)$$

$$\Omega \quad \Omega \quad C$$

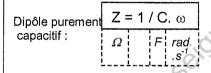
1/Ceq = 1/C1+1/C2+1/C3

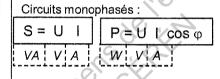
1/Req = 1/R1+1/R2+1/R3

Loi des noeuds : Loi des mailles :

 $\Sigma U = 0$

 $\Sigma 1 = 0$

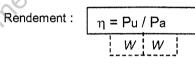

Générateurs :	Récepteurs :
U=E-rl	U=E+r.I
V V A A	VVΩA


Fonction sinusoïdale :		
u = Û	sin (ω t + φ)	

Dipôle purement

resistit :	Ω Ω
Dipôle purement inductif:	Z = L.ω
	Ω H rad.s ⁻¹

Z = R


Circuits triphasés :
$$P = U I \sqrt{3} \cos \varphi$$

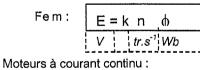
$$W V A$$

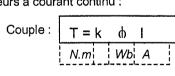
```
Relations, P, Q, S:

S = \sqrt{P^2 + Q^2}
VA \mid W \mid VAR
Q = P \text{ tang } \phi
\sin \phi = Q / S
\cos \phi = P / S
```

Lois sur les machines électromagnétiques

Loi de mécanique :


$$P = T \cdot \Omega$$


$$W \mid N.m \mid rad.s^{-1}$$

Moteurs asynchrones:

f = p n _s	$g = (n_s - n) / n_s$
Hz tr.s ⁻¹	$tr.s^{-1}$ $tr.s^{-1}$

Génératrices à courant continu :

Transformateur:

Transformateur	:
Rapport de transformation	m = Ns / Np
	m = Uso / Up

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session 2010
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page: DR 14/14