

Ce document a été numérisé par le <u>CRDP</u> de <u>Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel session 2011

BREVET DE TECHNICIEN SUPERIEUR

SESSION 2011

Épreuve de mathématiques

GROUPEMENT B

Durée : 2 heures

	SPECIALITE	COEFFICIENT
	Conception et industrialisation en microtechniques	1,5
	Dès que le sujet vous est remis, assurez-vous qu'il e Le sujet comporte 6 pages numérotées de 1/6 a dont une annexe à rendre avec la copie.	
050	Un formulaire de 3 pages est joint au sujet	The second secon
80		

Les calculatrices de poche sont autorisées conformément à la circulaire n° 99-186 du 16 novembre 1999. Tout autre matériel est interdit.

La clarté du raisonnement et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

GROUPEMENT B DES BTS	SESSION 2011
Mathématiques	MATGRB2
Durée : 2 heures	Page: 1/6

EXERCICE 1 (12 points)

Les deux parties de cet exercice peuvent être traitées de façon indépendante,

A. Résolution d'une équation différentielle

où y est une fonction inconnue de la variable réelle x, définie et deux fois dérivable sur \mathbb{R} , y la fonction dérivée de y et y'' sa fonction dérivée seconde.

- 1° a) Résoudre dans \mathbb{R} l'équation : $r^2 3r + 2 = 0$.
- b) En déduire les solutions définies sur \mathbb{R} de l'équation différentielle (E_0) : y'' 3y' + 2y = 0.Soit g la fonction
- 2° Soit g la fonction définie sur \mathbb{R} par $g(x) = 2x e^x + 3$.
 - a) Cette question est une question à choix multiples. Une seule réponse est exacte. Recopier sur la copie la réponse qui vous paraît exacte. On ne demande aucune iustification.

La réponse juste rapporte un point. Une réponse fausse ou une absence de réponse ne rapporte ni n'enlève de point.

La fonction dérivée g' de la fonction g est définie sur IR par :

$$g'(x) = 2 e^x$$
 $g'(x) = 2x e^x$ $g'(x) = (2x + 2) e^x$

- b) Démontrer que la fonction g est une solution particulière de l'équation différentielle
- 3° En déduire l'ensemble des solutions de l'équation différentielle (E).
- 4° Déterminer la solution f de l'équation différentielle (E) qui vérifie les conditions initiales f(0) = 2 et f'(0) = 1.

B. Étude d'une fonction et calcul intégral

Soit f la fonction définie sur \mathbb{R} par $f(x) = (2x - 1) e^x + 3$. On note \mathscr{C} sa courbe représentative dans le plan muni d'un repère orthogonal.

1° a) On admet le résultat suivant : $\lim x e^x = 0$.

Calculer $\lim f(x)$.

- b) En déduire que la courbe $\mathscr C$ admet une droite asymptote dont on donnera une équation.
- 2° a) Démontrer que le développement limité, à l'ordre 2, au voisinage de 0, de la fonction $f \text{ est}: f(x) = 2 + x + \frac{3}{2}x^2 + x^2 \varepsilon(x) \text{ avec } \lim_{x \to 0} \varepsilon(x) = 0.$
 - b) En déduire une équation de la tangente T à la courbe $\mathscr C$ au point d'abscisse 0.

GROUPEMENT B DES BTS	SESSION 2011
Mathématiques	MATGRB2
Durée : 2 heures	Page : 2/6

c) Cette question est une question à choix multiples. Une seule réponse est exacte. Recopier sur la copie la réponse qui vous paraît exacte. On ne demande aucune justification.

La réponse juste rapporte un point. Une réponse fausse ou une absence de réponse ne rapporte ni n'enlève de point.

On veut justifier qu'au voisinage du point d'abscisse 0, la courbe $\mathscr C$ est au-dessus de la droite T. Recopier sur votre copie la justification exacte.

au voisinage de 0. au voisinage de 0. au voisinage de 0.		$\frac{3}{2}x^2 \text{ est positif}$ au voisinage de 0.	$x^{2} \varepsilon(x)$ est positif au voisinage de 0.	2 + x est positif au voisinage de 0.
--	--	---	---	---

- 3° On admet que la fonction dérivée de f est donnée, pour tout x réel, par : $f'(x) = (2x+1) e^x$.
 - a) Étudier sur \mathbb{R} le signe de f'(x) puis en déduire le sens de variation de f sur \mathbb{R} .
 - b) Donner la valeur approchée arrondie à 0,01 du minimum de la fonction f.

4° a) On note
$$I = \int_0^{0.5} \left(2 + x + \frac{3}{2}x^2\right) dx$$
.

Démontrer que $I = 1,1875$.

b) On note $K = \int_0^{0.5} (2x - 1) e^x dx$.

Démontrer, à l'aide d'une intégration par part c) On note $J = \int_0^{0.5} f(x) dx$.

En utilisant la question précédente, détermine d) Vérifier que $J - I$ est inférieur à 2×10^{-2} .

b) On note
$$K = \int_0^{0.5} (2x - 1) e^x dx$$
.

Démontrer, à l'aide d'une intégration par parties, que $K = 3 - 2e^{0.5}$.

c) On note
$$J = \int_0^{0.5} f(x) dx$$

En utilisant la question précédente, déterminer la valeur exacte de J.

GROUPEMENT B DES BTS	SESSION 2011
Mathématiques	MATGRB2
Durée : 2 heures	Page : 3/6

EXERCICE 2 (8 points)

On considère un signal périodique correspondant à la fonction f définie sur IR et représentée sur le graphique fourni en annexe, pour tout réel x de l'intervalle $[-2\pi, 2\pi]$.

Les questions 1° et 2° sont des questions à choix multiples. Pour chaque question, une seule réponse est exacte. Recopier sur la copie la réponse qui vous paraît exacte. On ne demande aucune justification.

La réponse juste rapporte un point. Une réponse fausse ou une absence de réponse ne rapporte ni n'enlève de point.

1° La fonction f est :

maina da mánia da		• • • •
paire de période π .	paire de période 2π .	impaire de période π .
	A	

2° Pour tout nombre réel x de l'intervalle $[0, \pi]$, $f(x) = \pi - x$.

Si x appartient à l'intervalle $[-\pi, 0]$, f(x) s'écrit :

$f(x) = -x f(x) = \pi + x$	$f(x) = \frac{\pi}{2} + x$
------------------------------	----------------------------

- 3° On note a_0 , et, pour tout entier naturel non nul n, a_n et b_n les coefficients de Fourier de la fonction f.

 - a) Justifier que pour tout n non nul, $b_n = 0$. b) Calculer l'intégrale $I = \int_0^{\pi} (\pi x) dx$. c) Montrer que $a_0 = \frac{\pi}{2}$.
- 4° a) Un logiciel de calcul formel donne le résultat suivant :

$$a_n = \frac{2}{\pi n^2} [1 - (-1)^n], \text{ pour tout } n \ge 1.$$

Le résultat précédent n'est pas à démontrer.

Déterminer les valeurs exactes de a_1 , a_2 et a_3 .

b) On note s₃ la fonction correspondant au développement en série de Fourier de la fonction f, dans lequel on ne conserve que les termes d'indice n inférieur ou égal à 3. Écrire l'expression de $s_3(x)$. BoseNoi

GROUPEMENT B DES BTS	SESSION 2011
Mathématiques	MATGRB2
Durée : 2 heures	Page: 4/6

5° On considère la fonction g définie sur \mathbb{R} par : $g(x) = \frac{\pi}{2} + \frac{4}{\pi} \left(\cos x + \frac{1}{9} \cos(3x) \right)$.

a) Compléter, à l'aide de la calculatrice, le tableau figurant sur la feuille annexe, avec les valeurs approchées de f(x) et g(x) arrondies à 0,01.

b) On admet que la fonction g est décroissante sur $[0, \pi]$. Tracer, dans le repère donnée en

$$a_0 = \frac{1}{T} \int_a^{a+T} f(t) dt \quad ; \quad a_n = \frac{2}{T} \int_a^{a+T} f(t) \cos(n \omega t) dt \quad (n \in \mathbb{N}^*);$$

$$b_n = \frac{2}{T} \int_a^{a+T} f(t) \sin(n \omega t) dt$$

$$b_{n} = \frac{2}{T} \int_{a}^{a+T} f(t) \sin(n \omega t) dt.$$

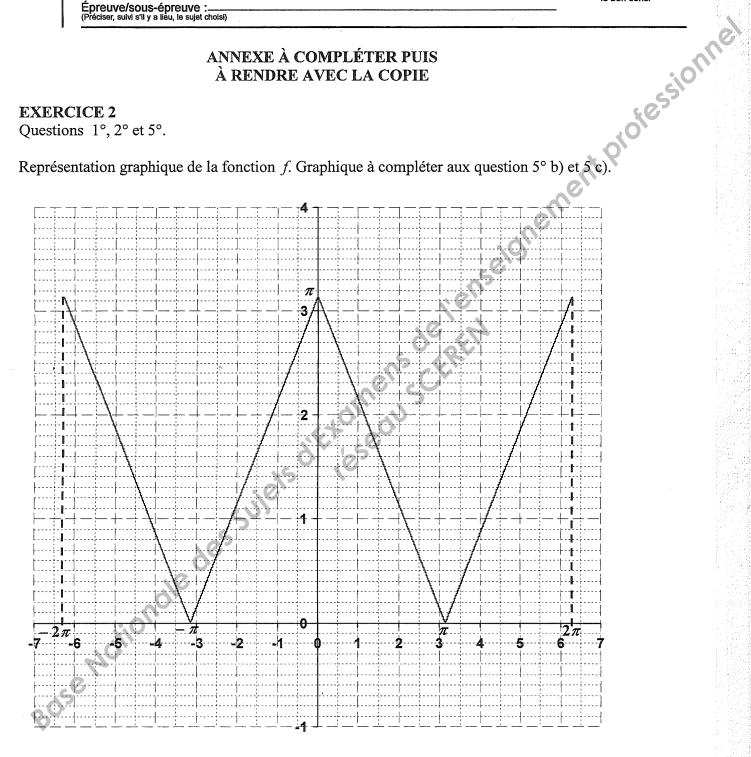
$$c_{k} = \frac{1}{T} \int_{a}^{a+T} f(t) e^{-ik\omega t} dt \quad (k \in \mathbb{Z}) \quad ; \quad c_{0} = a_{0} \quad ;$$

$$\frac{a_{n} - ib_{n}}{2} = c_{n} \quad ; \quad \frac{a_{n} + ib_{n}}{2} = c_{-n} \quad (n \in \mathbb{N}^{*}).$$

$$\frac{a_n - \mathrm{i}b_n}{2} = c_n \; ; \quad \frac{a_n + \mathrm{i}b_n}{2} = c_{-n} \; (n \in \mathbb{IN}^*).$$

GROUPEMENT B DES BTS	SESSION 2011
Mathématiques	MATGRB2
Durée : 2 heures	Page : 5/6

		Modèle El
Académie :	Session:	
Examen ou concours :		Série* :
Spécialité/Option :	Repère de l'	épreuve :
Épreuve/sous-épreuve :		
NOM :(en majuscules, suivi s'il y a lieu, du nom d'épouse)		
Prénoms :	N° du candidat	
Né(e) le :		(le numéro est celui qui figure sur la convocation ou la liste d'appel)
Examen ou concours :	Série* :	
Spécialité/Option :		
Repère de l'épreuve :		
Épreuve/sous-épreuve :		le bon sens.



Tableaux de valeurs à compléter à la question 5° a) :

x	0	0,5	1	1,5	$\frac{\pi}{2}$	2	2,5	3	π
$f(x) \approx$			2,14						
$g(x) \approx$			2,12						

GROUPEMENT B DES BTS	SESSION 2011
Mathématiques	MATGRB2
Durée : 2 heures	Page : 6/6

LEPTION ET INDUSTRIALISATION OF ESTADORE EN MICROTECHNIQUES

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. RELATIONS FONCTIONNELLES

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}, \text{ où } a > 0$$

$$t^{\alpha} = e^{\alpha \ln t}, \text{ où } t > 0$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p-q}{2}\cos \frac{p+q}{2}$$

$$\cos p + \cos q = 2\cos \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin \frac{p+q}{2}\sin \frac{p-q}{2}$$

I. RELATIONS FONCTIONNELLES
$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}, \text{ où } a > 0$$

$$t^{\alpha} = e^{\alpha \ln t}, \text{ où } t > 0$$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin(2t) = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\cos p + \cos q = 2\cos \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin \frac{p+q}{2}\sin \frac{p-q}{2}$$
2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Compartement à l'origine

Comportement à l'infini

$$\begin{split} & \lim_{t \to +\infty} \ln t = +\infty \; ; \\ & \lim_{t \to +\infty} \mathrm{e}^t = +\infty \; ; \\ & \lim_{t \to +\infty} \mathrm{e}^t = 0 \; ; \\ & \mathrm{Si} \; \alpha > 0, \; \lim_{t \to +\infty} t^\alpha = +\infty \; ; \qquad \mathrm{si} \; \alpha < 0, \; \lim_{t \to +\infty} t^\alpha = 0 \end{split}$$

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$
Si $\alpha > 0$, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t \to 0} \ln t = -\infty$$

$$\sin \alpha > 0, \lim_{t \to 0} t^{\alpha} = 0 ; \quad \sin \alpha < 0, \lim_{t \to 0} t^{\alpha} = +\infty$$

$$\sin \alpha > 0, \lim_{t \to 0} t^{\alpha} \ln t = 0.$$

b) Dérivées et primitives

Fonctions usuelles

f(t)	f'(t)	f(t)	f'(t)
$\ln t$	$\frac{1}{t}$	ch t	sh t
· e ^t	e ^t	sh t	ch t
$t^{\alpha} \ (\alpha \in \mathbb{R})$	$\alpha t^{\alpha-1}$	Arc sin t	$\frac{1}{\sqrt{1-\frac{2}{3}}}$
$\sin t$	cos t		$\sqrt{1-t}$
cos t	$-\sin t$	Arc tan t	$\frac{1}{1+t^2}$
tan t	$\frac{1}{\cos^2 t} = 1 + \tan^2 t$	$e^{at} (a \in I, C)$	ae ^{at}

Opérations

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$(u^a)' = \frac{u'v-u$$

$$(v \circ u)' = (v' \circ u)u'$$

$$\left(e^{u}\right) = e^{u} u$$

 $(\ln u)' = \frac{u'}{u}$, u à valeurs strictement positives

$$\left(u^{\alpha}\right)' = \alpha \ u^{\alpha - 1} \ u'$$

$$\frac{1}{b-a} \int_{a}^{b} f(t) \, \mathrm{d}t$$

$$\int_{a}^{b} u(t) \ v'(t) \ dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t) \ v(t) \ dt$$

d) Développements limités

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon (t)$$

$$= \frac{1}{1+t} = 1 - t + t^{2} + \dots + (-1)^{n} t^{n} + t^{n} \varepsilon (t)$$

$$\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3!} + \dots + (-1)^{n-1} \frac{t^{n}}{n} + t^{n} \varepsilon (t)$$

$$\sin t = \frac{t}{1!} - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \dots + (-1)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$$

$$\cos t = 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{p} \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon (t)$$

$$(1+t)^{\alpha} = 1 + \frac{\alpha(\alpha-1)}{2!} t^{2} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} t^{n} + t^{n} \varepsilon (t)$$

$$\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon(t)$$

e) Equations différentielles

Équations	Solutions sur un intervalle I		
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$		
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique		
équation caractéristique:	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique		
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines		
de discriminant ⊿	complexes conjuguées de l'équation caractéristique.		