MINISTERE DE L'EDUCATION NATIONALE

BREVET PROFESSIONNEL MONTEUR DEPANNEUR EN FROID ET CLIMATISATION

Session 2011

E.1 A ETUDE TECHNOLOGIQUE DES INSTALLATIONS

Documents techniques		DT
	Sommaire	DT2/8
	Description des installations	DT3/8
	Annexes	DT4/8 à DT8/8

BP MONTEUR DEPANNEUR EN FROID ET CLIMATISATION		DOSSIER TECHNIQUE
	E.1-A (U11) : PHYSIQUE APPLIQUEE	Session 2011
Durée de l'épreuve : 2h	Coef: 3	DT1/8

EXTRAIT DU CAHIER DES CHARGES D'UN SUPERMARCHE AVANT MODIDIFICATION

Sommaire

DESCRIPTION DES EQUIPEMENTS	3
1. BASES DE CALCUL	3
2. EQUIPEMENT PRODUCTION FRIGORIFIQUE	3
3. EQUIPEMENT DES CHAMBRES FROIDES ET LABORATOIRES	3
6. REGULATION	3
7. ANNEXES	
Schéma du laboratoire principal SGI Laboratoire	4
Photo évaporateur plafonnier double flux	5
Relevés de mesures effectués dans le laboratoire principal lors de la mise en service	5
Document constructeur installation « Retournement évaporateur »	6
Schéma de principe de l'installation et données bureau d'étude	7
Formulaire	8

DESCRIPTION DES EQUIPEMENTS

1. BASES DE CALCUL

Conditions d'ambiance ETE (moyennes/24 h)

2. EQUIPEMENT PRODUCTION FRIGORIFIQUE

• Productions frigorifiques positives (à contrôler par l'installateur)

1 solution sera chiffrée :

Une centrale positive neuve au R404 A pour l'ensemble des besoins. Elle sera installée dans le local technique, composé de 4 compresseurs à piston 6F-40.2Y – 40P ou similaire.

Régime de fonctionnement :

Température de condensation + 45 [°C] Température d'évaporation - 10 [°C]

L'écart "température de condensation/Température d'entrée d'air " ne devra pas être supérieure à 10°C pour les condenseurs positifs.

3. EQUIPEMENT DES CHAMBRES FROIDES ET LABORATOIRES

Les laboratoires seront équipés d'évaporateurs plafonnier double flux.

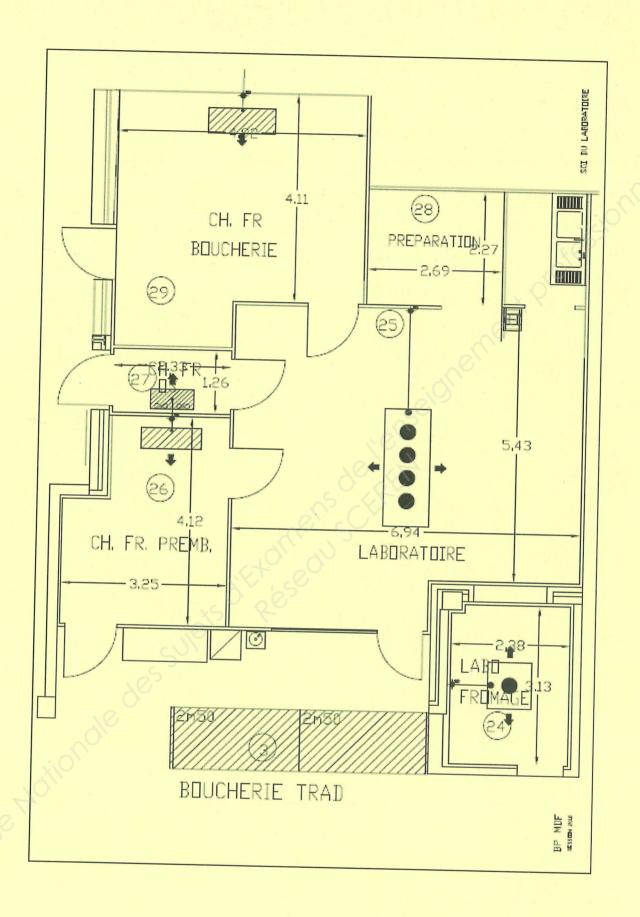
Régime de températures : +8 [°C] / +10 [°C].

- Hygrométrie relative : 80 [%].

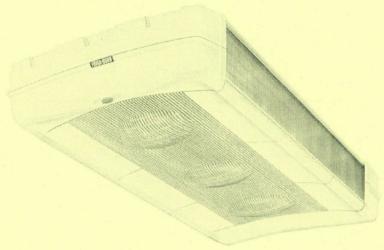
- DT:8[K]

4. Régulation

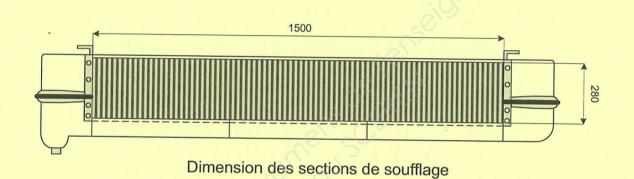
Chambres froides neuves.


- Chaque chambre froide ou laboratoire possédera sa propre régulation qui pourra être commune à plusieurs évaporateurs.

Elle sera du type thermostatique plus un contrôle de la pression d'évaporation sur les postes à fort niveau d'hygrométrie et sur les laboratoires.


Le thermostat et afficheur de température facilement lisible devront être placés à la portée des yeux, près de la porte d'entrée, avec indication du poste et des heures de dégivrage. Un système de "traçabilité" des températures sera proposé pour les postes à obligation avec option pour les autres.

Le type du thermostat sera un MR 44 de marque JOHNSON CONTROLS.


Toutes les chambres seront alarmées.

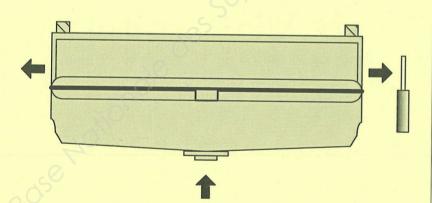
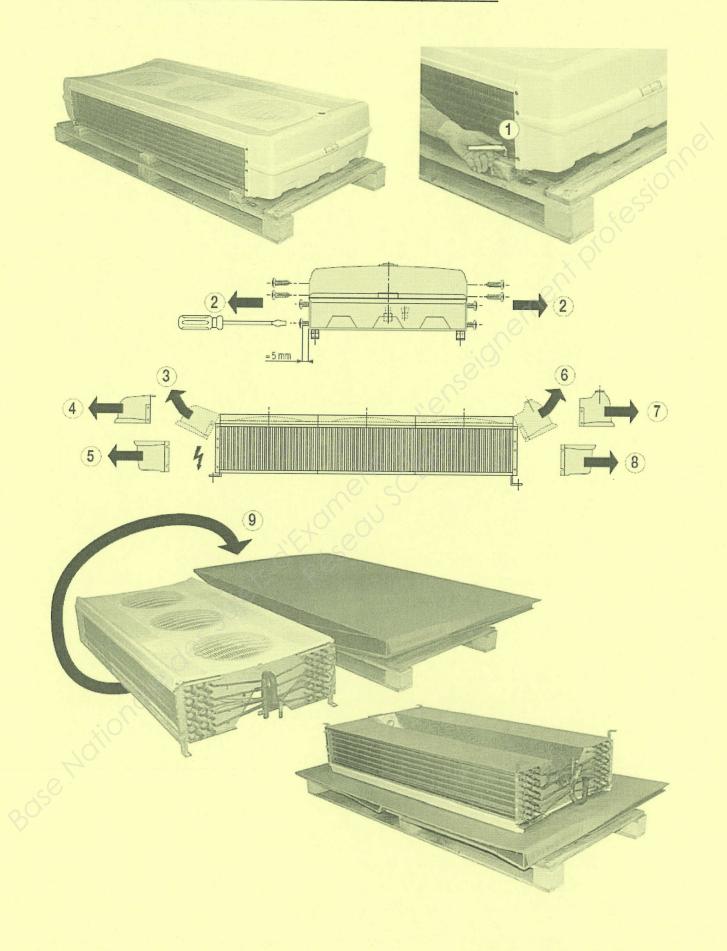
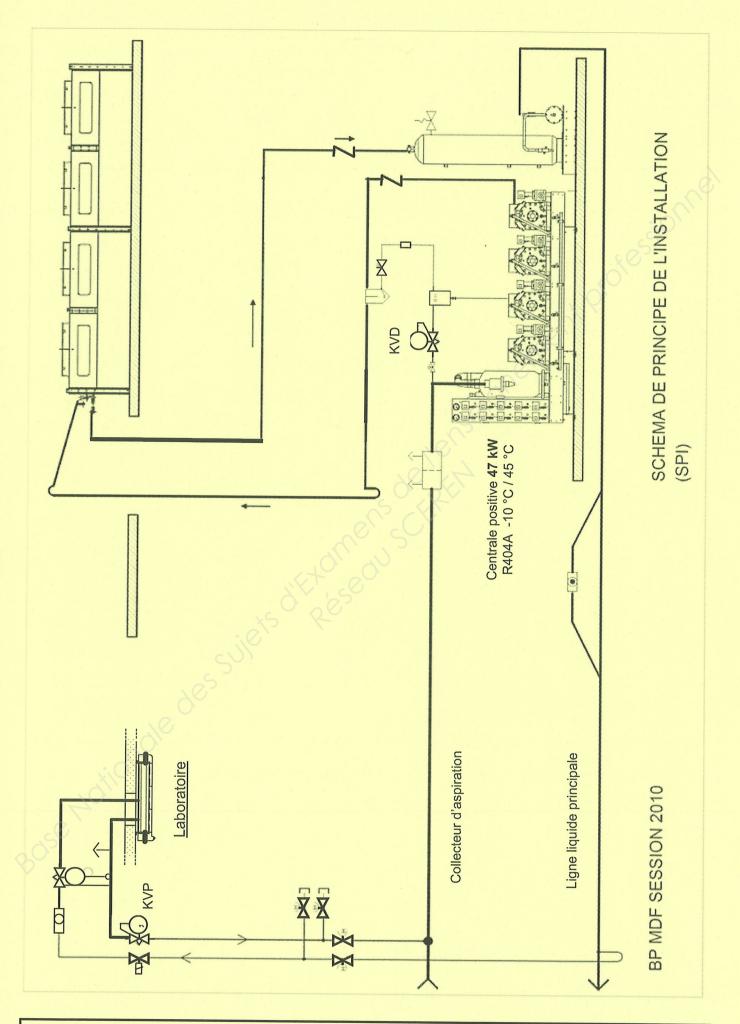


Photo évaporateur plafonnier double flux :

Dimensions de l'évaporateur en [mm] :


<u>Valeurs mesurées à la mise en</u> service


Température de soufflage = 2.5°C Vitesse moyenne d'air = 0.76 m/s Température de surface batterie = 1°C

Température ambiante= 9°C Hygrométrie relative = 80%

On considère que la température de surface batterie est égale à la température d'ébullition

Document constructeur installation « Retournement évaporateur »:

FORMULAIRE

Surface frontale d'un échangeur à air :

Le rendement volumétrique :

S=LxH

 $nv = 1 - 0.05x\tau$

S en [m²]

L &H en [m]

Débit volumique d'air dans un échangeur :

Débit massique de fluide frigorigène :

QV=SxV

Pcond=Øk

Qv en [m³/s] S en [m²] vitesse de l'air : V en [m/s] Qmff = \emptyset k x Δ h

Δh: différence d'enthalpie entre l'entrée et la sortie de l'échangeur

Qmff en[kg/s]

Øk en [kW]

Débit massique d'air sec dans un échangeur :

Puissance de l'évaporateur:

Qmas = $Qv / v' = Qv \times \rho$

 \emptyset 0=Qmff x Δ ho

Qmas en [kgas/s] Qv en [m³/s] Volume spécifique v' en [m³/kgas] Masse volumique ρ en [Kgas/m³]

Δho: différence d'enthalpie entre l'entrée et la sortie de l'évaporateur

Ø0 en [kW]

Puissance d'un échangeur sur l'air :

Le volume aspiré:

Péchangeur=Qmas(hentrée-hsortie)

 $Va=Qmff \times V"1 = Qmff / \rho$

h en [kJ/kgas] P_{échangeur} en [kW]

Va en [m³/s] Qmff en [kg/s]

Masse volumique entrée compresseur : P

en en [kgff /m³]

Volume massique entrée compresseur V"1

en [m³/kgff]

Efficacité d'une batterie:

 $\Sigma = P_{\text{réelle échangeur}} / P_{\text{théorique max}}$

ou

 $\Sigma = \Delta h$ réelle échangeur / Δh théorique max

Puissance du condenseur:

 \emptyset k=Qmff x Δ hk

Δhk : différence d'enthalpie entre l'entrée et la

sortie du condenseur

Øk en [kW]

Le taux de compression :

 $\tau = P_{ref} / P_{asp}$

P_{ref} et P_{asp} en [bar]