

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

Session: PRINTEMPS 2011

BREVET PROFESSIONNEL

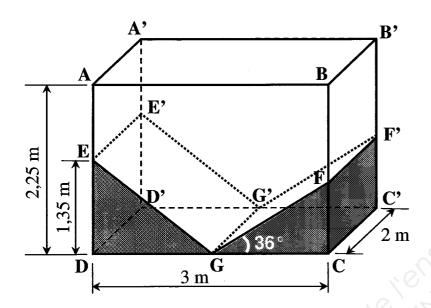
Monteur en installations de génie climatique

Épreuve E4 - Unité 40 MATHEMATIQUES

Durée : 1 heure

Coefficient : **1**

- Ce sujet est composé de 5 pages.
- Les questions à traiter sont aux pages numérotées 2/5, 3/5 et 4/5.
- La page 5/5 (ANNEXE) est à rendre avec la copie.


Exercice 1:

(9 points)

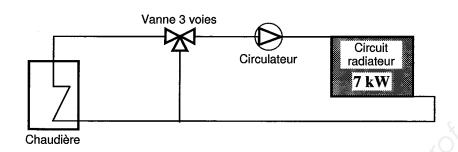
Un particulier décide de faire installer une chaudière à granulés bois. Il veut réaliser lui-même le silo de stockage des granulés de forme parallélépipédique dont une vue en perspective est représentée par la figure ci-dessous.

Les figures (EGG'E') et (GFF'G') représentent le fond du silo.

La partie grisée ne contient pas de granulés.

- G est le milieu de DC
- (GG'), (DD') et (CC') sont parallèles.
- $\overrightarrow{FGC} = 36^{\circ}$
- Sur cette figure, les proportions ne sont pas respectées.

On se propose de calculer le volume utile du silo $V_{\rm S}$ pour le stockage des granulés et la mesure de l'angle d'inclinaison $\widetilde{\rm EGD}$.


- 1) Calculer, en m, la longueur représentée par [GC].
- 2) Dans le triangle GCF rectangle en C, l'angle FGC mesure 36°.
 En utilisant une relation trigonométrique dans ce triangle, calculer, en m, la longueur représentée par [FC]. Arrondir la valeur au dixième.
- 3) On donne : FC = 1,1 m. Calculer, en m^2 , l'aire A_1 représentée par le triangle rectangle GCF.
- 4) Calculer, en m^2 , l'aire A_2 représentée par le triangle rectangle EDG.
- 5) Calculer, en m^2 , l'aire A_3 représentée par le rectangle ABCD.
- 6) On donne: $A_1 = 0.83 \text{ m}^2$, $A_2 = 1.01 \text{ m}^2$ et $A_3 = 6.75 \text{ m}^2$. • le profondeur du silo : CC' = 2 m.
 - 6.a) Calculer, en m^2 , l'aire A_S de la section représentée par la figure ABFGE.
 - 6.b) Calculer, en m^3 , le volume utile du silo V_S (en m^3) pour le stockage des granulés bois.
- 7) Pour un bon fonctionnement du silo, la mesure de l'angle EGD formé entre le panneau (EGG'E') et l'horizontale doit être comprise entre 35° et 45°.
 - 7.a) En utilisant une relation trigonométrique dans le triangle EDG rectangle en D, calculer, en degré, la mesure de l'angle EGD. Arrondir la valeur à l'unité.
 - 7.b) Dans ce cas, le silo réalisé sera-il en bon fonctionnement ? Justifier la réponse.

Exercice 2:

(11 points)

La chaudière à granulés bois alimente un circuit de radiateur.

Le montage du système est schématisé par la figure ci-dessous.

Première partie : Calculs de débits du circulateur et de vitesse de l'eau dans le tube.

On donne les relations suivantes :

$$P = Q_m \times C \times \Delta\theta$$

P: puissance (en kW)

$$\Delta\theta$$
: écart de températures de l'eau (en°C).

$$Q_m = \rho \times Q_v$$

$$Q_v$$
: débit volumique (en m³/s)

$$Q_v = V \times S$$

- 1) On donne : la masse volumique de l'eau :

$$\rho = 1000 \text{ kg/m}^3$$
.

• la chaleur massique de l'eau :

$$C = 4.18 \text{ kJ/kg.}^{\circ}\text{C.}$$

• l'écart de températures de l'eau :

$$\Delta\theta = 15^{\circ}\text{C}.$$

- 1.a) Calculer, en kg/s, le débit massique Q_m que le circulateur doit fournir pour que la puissance P du circuit radiateur soit égale à 7 kW. Arrondir la valeur au millième.
- 1.b) Calculer, en m³/s, le débit volumique Q_v.
- 1.c) Exprimer le débit volumique Q_v en m^3/h .
- 2) L'eau circule dans un tube en cuivre dont la section intérieure $S = 3.14 \times 10^{-4} \text{ m}^2$. On donne : $Q_v = 1{,}12 \times 10^{-4} \text{ m}^3/\text{s}$.

Calculer, en m/s, la vitesse V de l'eau circulant dans le tube. Arrondir la valeur au centième.

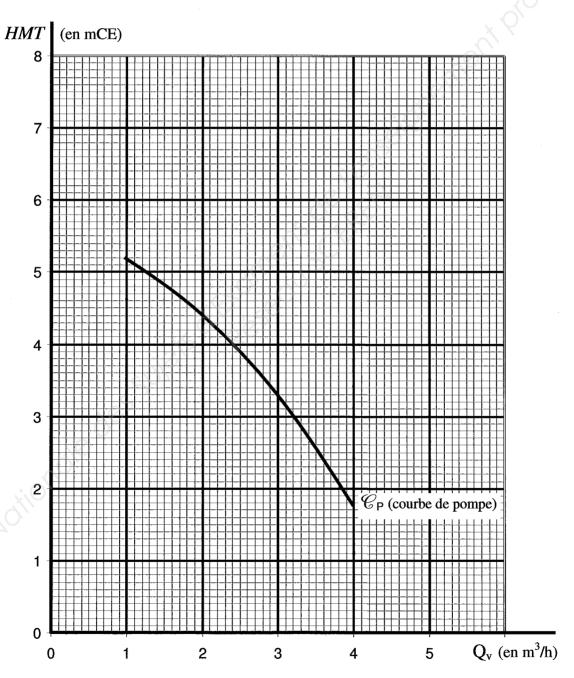
<u>Deuxième partie</u>: Tracé de « la courbe de réseau » et détermination du point de fonctionnement du système.

Dans le plan rapporté au repère orthogonal situé <u>en annexe</u> - page 5/5 (à rendre avec la copie), on donne le tracé de « la courbe de pompe \mathcal{C}_P » représentant la Hauteur Manométrique HMT (en mCE) en fonction du débit volumique Q_v (en m³/h) sur l'intervalle [1;4].

Note: L'unité « mCE » se lit « mètre de la colonne d'eau ».

Afin de déterminer graphiquement les valeurs caractéristiques (Q_v et HMT) du point de fonctionnement, on se propose de tracer, sur le même repère de l'annexe, « la courbe de réseau \mathscr{C}_R » en utilisant la relation :

$$HMT = 0.625 \, Q_v^2$$


- 1) Calculer:
 - 1.a) la Hauteur Manométrique *HMT* (en mCE) pour le débit $Q_v = 1.2 \text{ m}^3/\text{h}$.
 - 1.b) le débit volumique Q_v (en m³/h) pour lequel la Hauteur Manométrique HMT = 2.5 mCE.
- 2) Compléter le tableau de valeurs situé en annexe. Arrondir les valeurs au dixième.
- 3) Sur le repère de l'annexe, tracer « la courbe de réseau \mathscr{C}_{R} » sur l'intervalle [0 ; 3,5] en utilisant les valeurs du tableau précédent.
- 4) Soit F le point d'intersection de \mathscr{C}_{R} et \mathscr{C}_{P} . Les coordonnées de F représentent les valeurs caractéristiques du point de fonctionnement du système.
 - 4.a) Placer le point F.
 - 4.b) Indiquer les valeurs caractéristiques Q_v et HMT du point de fonctionnement. Laisser apparents les traits de lecture sur le graphique.

ANNEXE (à rendre avec la copie)

• <u>Tableau de valeurs</u> : (arrondir les valeurs au dixième)

Q _v (en m ³ /h)	0	1,2	1,8	2,2	2,8	3,5	
HMT (en mCE)	0					7,7	ve,
$\underline{\varepsilon}$ de la courbe de réseau \mathscr{C}_{R} et Coordonnées du point de fonctionnement :							
HMT (en mCE)							

• Tracé de la courbe de réseau \mathscr{C}_{R} et Coordonnées du point de fonctionnement :

