CAP EMPLOYÉ TECHNIQUE DE LABORATOIRE **SCIENCES APPLIQUÉES CHIMIE**

Ce sujet comporte 5 pages numérotées de 1/5 à 5/5.

Assurez-vous que cet exemplaire est complet. S'il est incomplet, demandez un autre exemplaire au chef de salle.

Les candidats composeront directement sur le sujet.

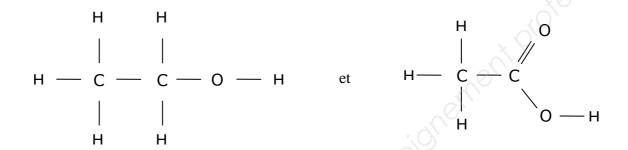
BARÈME: / 20 points

EXERCICE 1 /7 points

EXERCICE 2: /7 points

/6 points **EXERCICE 3:**

AUCUN DOCUMENT N'EST AUTORISÉ. L'USAGE DE LA CALCULATRICE EST AUTORISÉ.


Sujet : Métropole – La Réunion	Session : 2011	Code : 2011-06N				
CAP EMPLOYÉ TECHNIQUE DE LABORATOIRE						
SCIENCES ADDI IOLIÉES : CHIMIE						

Coefficient: 4 Page: 1/5 **SUJET** Durée: 3 h

EXERCICE 1 (7 points)

L'acide éthanoïque est présent dans le vinaigre. Il est obtenu par fermentation de l'éthanol du vin en présence du dioxygène de l'air et sous l'action de microorganismes.

L'éthanol et l'acide acétique ont respectivement pour formules développées :

organiques.	s brutes et calculer les masses molaires de ces composé	
	(to 20.	-

2.	Écrire	e et	équilik	orer	l'équation	on d	le la	réaction	de	fermentation	sachant	que	ľon
ob	tient a	auss	i de l'ea	au.									
N 46	.,												

_	Sujet : Métropole	e – La Réunion	Session : 2011	Co	ode : 2011-06N			
	CAP EMPLOYÉ TECHNIQUE DE LABORATOIRE							
	SCIENCES APPLIQUÉES : CHIMIE							
Ī	SUJET	Durée : 3 h	Coefficient	t : 4	Page : 2 / 5			

3. Or	n réalise la fermentation de	20g d'éthanol.		
	Calculer le nombre de mole Calculer le volume de dioxy		•	
	nées : M (C) = 12g.mol ⁻¹ olume molaire dans les con			
EXE	RCICE 2 (7 points)			
	、. ,			
L'eau	u oxvaénée (ou peroxva	de d'hydrogène) u	tilisée comme désinfectant	est
cons	tituée de molécules de forn	nule brute H_2O_2 .		
On s	ouhaite déterminer la repré	esentation de Lewis	de la molécule d'eau oxygéné	e.
	ompléter le tableau suivant	t.		
וווטע	<u>nées</u> : H : Z = 1 ; O : Z = 8			
	Molécule	Forr	nule brute :	
	Atome : nom et symbole			
	Structure électronique			
	Nombre d'électrons externes			

Sujet : Métropole	e – La Réunion	Session : 2011	1-06N			
CAP EMPLOYÉ TECHNIQUE DE LABORATOIRE						
SCIENCES APPLIQUÉES : CHIMIE						
SUJET	Durée : 3 h	Coefficient	t:4 Page	: 3 / 5		

Valence

Modèle de Lewis

	e d'un flacon d'eau oxy		ons suivantes :
« solution a Flacon de 25	ntiseptique pour applica	ation locale	
	oomL n : Peroxyde d'hydrogèr	ne 3a pour 100mL de si	olution »
	, , , , , , , , , , , , , , , , , , ,		
0.4.0.1. 1	In a second of the second of B		. I I . M
3.1 Calculer	le nombre de moles d'é	eau oxygenee contenue	e dans le flacon, au mil
3.2 Calculer	la concentration molair	e de cette eau oxygéné	ée au millième près.
		Z	
		,	
	~5		
	,		
Downson	M - 1 a mol ⁻¹	M – 16 g mol ⁻¹	
<u>Données</u> :	M _H = 1 g.mol ⁻¹	$M_0 = 16 \text{ g.mol}^{-1}$	
<u>Données</u> :	M _H = 1 g.mol ⁻¹	$M_0 = 16 \text{ g.mol}^{-1}$	
<u>Données</u> :	$M_H = 1 \text{ g.mol}^{-1}$	$M_0 = 16 \text{ g.mol}^{-1}$	

Sujet : Métropole	e – La Réunion	Session : 2011	Code : 2011-06N			
CAP EMPLOYÉ TECHNIQUE DE LABORATOIRE						
SCIENCES APPLIQUÉES : CHIMIE						
SUJET	Durée : 3 h	Coefficient	t:4 Page:4/5			

EXERCICE 3 (6 points)

1. Quels sont les couples rédox présents dans l'extrait de classification électrochimique ci-dessous ? Écrire les demi-équations électroniques de ces couples

Pouvoir Oxydant Croissant	$Ag^{+} Ag$ $Cu^{2+} Cu$ $Fe^{2+} Fe$					
						•••••
			(S		
			. 6			
Justifier la répo		(1) (8) (2) (8)				
3. A l'aide de q Justifier les rép	uel(s) réducteur onses. Écrire le	r(s) peut-on res équations-	éduire : l'ion bilan des réa	Cu ²⁺ ? L'ion actions possib	Ag ⁺ ? bles.	
.,,,(0)		• • • • • • • • • • • • • • • • • • • •				
•••••		• • • • • • • • • • • • • • • • • • • •		•••••••	•••••	••••
•••••		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	• • • • • • • • • • • • • • • • • • • •	• • • • •
		•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • •
	•••••	• • • • • • • • • • • • • • • • • • • •				• • • • •

Sujet : Métropole	e – La Réunion	Session: 2011	2011-06N			
CAP EMPLOYÉ TECHNIQUE DE LABORATOIRE						
SCIENCES APPLIQUÉES : CHIMIE						
SUJET	Durée : 3 h	Coefficient	t:4 F	Page : 5 / 5		