

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

Ministère de l'Éducation Nationale

MENTION COMPLÉMENTAIRE

MAINTENANCE DES SYSTÈMES EMBARQUES DE L'AUTOMOBILE

Dominante : Véhicules Particuliers

SESSION 2012

Épreuve E1

Unité: U 1

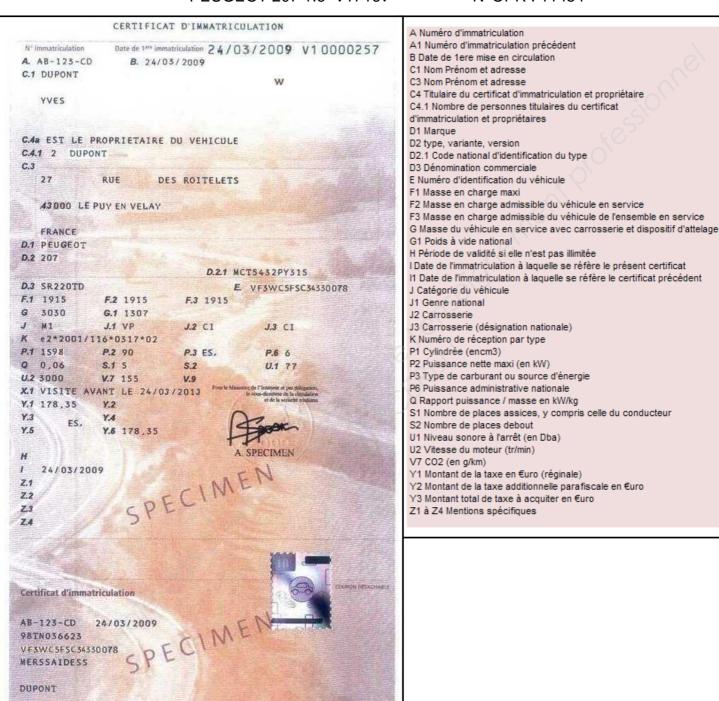
ÉTUDE TECHNIQUE

C 1.C 2,C 3, C 4.

DOSSIER RESSOURCES

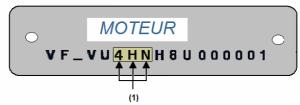
Ce dossier concerne le système de gestion moteur (BOSCH MEV 17.4) d'une PEUGEOT 207 1.6 VTi 16v

A rendre en fin d'épreuve avec le dossier travail.


Ministère de l'Éduca	tion Nationale	Session:	2012	2	Code : 010-25507R			
Examen: M.C MAINTENANCE DES SYSTEMES EMBARQUES DE L'AUTOMOBILE.								
Épreuve : E1 Etude t	Dominan	Dominante Véhicules Particuliers						
RESSOURCES	Date :	Durée : 3	h	Coefficient: 3	}	Page 1 sur 16		

1. Identification

YVES


CRFRAAB123CD0VF7X18E00018E847219801059VP<<<< CI<<MERSSAIDESS<<<SR220TD<<<<<98TN036623<38

PEUGEOT 207 1.6 VTi 16v N°OPR : 11454

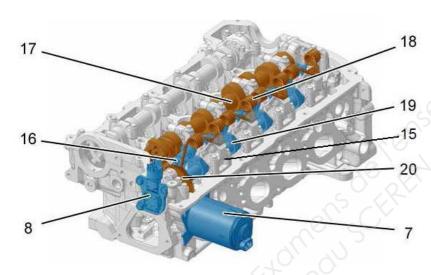
Examen: M.C					
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 2 sur 16

2. Type moteur (1)

CODE	384	F	TU1	. A	TU3	BA						(1)					ЕТ3
Type moteur	CF/	A	HFX HFV	/	KFX		KFV/	K6D/K6F	F	ΚF	W/K6E	/KFT					KFU
Cylindrée(cm ³)	998		1124		1360)											
Alésage (mm)	71		72		75									c	.0	5	
Course (mm)	84		69		77												
Puissance maxi : (kW)	50		44		55	5 54		5	55			X	6,			65	
Régime puissance maxi (tr/mn)	600	0	5500		5200		5200		5	54(00		(0)				5250
Couple maxi : (m.daN CEE)	9,3		9,4	Î	11		11,5		1	12	- A'	10,					13,3
Régime couple maxi (tr/mn)	360	0	3400		3400		2600		3	340	00						3250
CODE		Т	U5					1	4B1	2	EP3						
Type moteur		N	FR SI	FZ N	I6A	NFU	NFS	10	SFZ	A	8FS/ 8F	P	8F	ŦR			
Cylindrée (cm3)		15	87				<u> </u>		235	9	1397		13	197			
Alésage (mm)		78							88	Ī	77		77	1			
Course (mm)		77	1				1	7.5	97	i	75		75	í			
Puissance maxi: (k	W)	66	12	5 7	0	70	90	70	125	5 70 72		,					
Régime puissance (tr/mn)	maxi	58	600	000 5	600	5800	6500		6000	0	6000		<u> </u>				
Couple maxi : (m.c CEE)	daN	13	,2 23	,6 1	4,2	14,7	14,3		23,6	5	13,6		13	3,5			
Régime couple ma (tr/mn)	xi	40	000	7			4000		4000	0	4000						
CODE		EP6					EP6D	T	-					EP6D	ГS	EP6D	TX
Type moteur	5	FK	5FP	5FW 5FL	V/ 5F	S/	5FT	5FX/ 5FN/5F4	5	5F	V/5FR	5FM	5FY	5FU		5FU	
Cylindrée (cm3)	1	598															
Alésage (mm)	7	7															
Course (mm)	8	5												ĺ			
Puissance maxi : (kW CEE)	7	2	84	88			103	110	1	115	5	120	128	135		147	
Régime puissance maxi (tr/mn)	6	000	5200	5800	O		5800	6000				6000	5660	6000		5800	
Couple maxi : (m.daN CEE)	1	5,2	16	<u> </u>			24									27,5	
Régime couple ma (tr/mn)	xi 3	500	4250				1400							1600		1700	

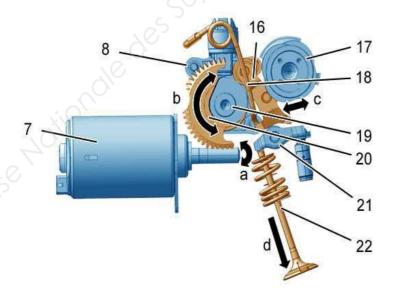
Examen: M.C						
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 3 sur 16	

3. Levée de soupapes variable à l'admission


3.1. Rôle

La levée de soupape variable permet de faire varier la quantité d'air admis dans le cylindre sans utiliser de boîtier papillon motorisé.

Cette phase permet:


- Un temps de réponse réduit
- Un gain en consommation
- Diminuer les émissions polluantes
- Répondre aux normes antipollution EURO4

3.2. Implantation

- (7) Moteur électrique de levée de soupapes variable à vis sans fin (Z=1)
- (8) Capteur de position de soupape.
- (15) Palier d'arbre à cames (Intermédiaire)
- (16) Levier intermédiaire.
- (17) Arbre à cames d'admission.
- (18) Ressort de rappel.
- (19) Arbre à cames (Intermédiaire).
- (20) Roue dentée (Z=30)

3.3. Description

- (7) Moteur de levée de soupapes.
- (8) Capteur de position de soupape.
- (16) Levier intermédiaire.
- (17) Arbre à cames d'admission.
- (18) Ressort de rappel : Levier intermédiaire.
- (19) Arbre à cames (Intermédiaire).
- (20) Roue dentée.
- (21) culbuteur.
- (22) Soupape.
- "a" Rotation : Moteur de levée de soupapes.
- "b" Rotation : Arbre à cames (Intermédiaire).
- "c" Déplacement du levier intermédiaire .
- "d" Levée variable de la soupape.

Examen: M.C	. Maintenance des sys	tèmes embarqués de l'a	automobile		
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 4 sur 16

La levée de soupapes variable à l'admission, est réalisée à l'aide d'un moteur électrique (7), entraînant un arbre à cames intermédiaire (19) par le biais d'un engrenage de type "vis sans fin/roue dentée" (20).

L'arbre à cames intermédiaire agit sur un levier intermédiaire (16) positionné entre le culbuteur (21) et l'arbre à cames d'admission (17).

L'arbre à cames d'admission appuie sur la soupape (22) par sa liaison avec le levier intermédiaire et le culbuteur ; La position du levier intermédiaire détermine la levée de la soupape d'admission qui varie entre 0,3 mm et 9,5 mm.

Le calculateur contrôle moteur commande le moteur de levée de soupape en fonction des informations suivantes :

- Information du capteur de position de pédale d'accélérateur
- Informations des capteurs de référence cylindre d'admission et d'échappement
- Position des soupapes d'admission

Le capteur de position de soupapes (8), mesure la position des soupapes d'admission et transmet l'information au calculateur contrôle moteur.

3.4. Moteur de levée de soupapes

3.4.1. Rôle

Le moteur de levée de soupape, <u>fait varier l'angle de l'arbre à cames</u> intermédiaire sur commande du calculateur moteur.

Le moteur de levée de soupapes permet de faire varier la levée des soupapes d'admission du minimum au maximum en moins de **300 ms**.

3.4.2. Implantation

(7) Moteur de levée de soupapes variable.

3.4.3. Description

À la coupure du contact, le moteur de levée de soupapes variable (7) effectue un réapprentissage des butées de fin de course, puis se positionne en levée de soupapes proche de 1,7 mm (valeur de levée pour le démarrage). Le positionnement du moteur de levée de soupapes variable permet le démarrage du moteur thermique.

3.4.4. Particularités électriques

Affectation des voies du connecteur :

- Voie 1: Alimentation + 12 volts
- Voie 2 : Masse

Le calculateur moteur transforme l'alimentation 12 V en **RCO** en provenance du relais du moteur de levée de soupapes (**1370**), pour commander le moteur de levée de soupapes variable (**7**).

ATTENTION : Ne pas alimenter directement le moteur de levée de soupapes variable pour ne pas l'endommager.

3.4.5. Mode dégradé

Lorsque le calculateur moteur détecte un défaut du système de levée de soupapes variable d'admission (capteur de position de soupapes, température moteur de levée de soupapes (7) supérieure à 175°C,...).

Examen : M.	C. Maintenance des sy	stèmes embarqués de l'	automobile		
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 5 sur 16

3.4.6. Modes secours du système

Il existe deux types de mode secours, suivant les défaillances du système.

Premier cas : mode dégradé

- Impossibilité de définir la position du système (dysfonctionnement du capteur de position soupape variable ou incohérence sur la position).
- Température étage de puissance supérieure à 120℃.
- Température du moteur électrique supérieure à 175°C.
- Défaut sur le fonctionnement de l'un des déphaseurs variables d'arbres à cames.

-

Le système se place en position levée maximum et le boîtier papillon motorisé gère le remplissage des cylindres. Mode dégradé peu perceptible par le client (pas d'allumage voyant directement lié au système de levée variable de soupape à l'admission).

Dans ces conditions, le régime moteur au ralenti passe de **700 tr/min** à environ **850 tr/min** (gestion moins précise du remplissage des cylindres).

NOTA : Ce mode dégradé est peu perceptible par l'utilisateur.

Second cas : mode dégradé sévère

- Dysfonctionnement du moteur électrique (mécanique ou électrique).
- Température étage de puissance supérieure à 125℃.
- Température du moteur électrique supérieure à 190℃.

- ...

Le système se bloque à la dernière position, impossibilité de modifier la levée des soupapes. C'est un mode dégradé sévère.

Exemple:

Lorsque le moteur tourne au ralenti, si l'alimentation du moteur est coupée, la valeur de levée des soupapes sera bloquée à **0.3 mm**. Dans ces conditions, le moteur va caler et le redémarrage sera impossible ou le moteur va démarrer puis caler (la consigne de levée pour pouvoir démarrer est de **1.7 mm**). Lorsque le calculateur moteur détecte un défaut du moteur de levée de soupapes variable d'admission (blocage, température supérieure à 190°C, défaut relais de puissance du moteur de levée de soupapes (**1370**),...) la gestion moteur adopte un **mode dégradé**.

Le calculateur moteur ne peut plus faire varier la position des soupapes d'admission, le système reste donc sur sa dernière position.

Le calculateur moteur utilise alors le boîtier papillon motorisé pour gérer la quantité d'air admis. La quantité d'air admis dépend de la position des soupapes lors de la panne, ce qui pénalise grandement le fonctionnement du moteur.

NOTA : Ce mode dégradé sévère peut rendre impossible le démarrage du moteur.

3.5. Capteur de position de soupape d'admission 3.5.1. Rôle

Le capteur de position de soupape d'admission informe le calculateur moteur de la position angulaire de l'arbre à cames intermédiaire. Le calculateur moteur en déduit la valeur de levée des soupapes d'admission. Le calculateur moteur compare cette information à l'information de position de pédale d'accélérateur et à l'information des capteurs de référence cylindre d'admission et d'échappement.

Examen: M.C	. Maintenance des systè	èmes embarqués de l'a	utomobile		
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 6 sur 16

3.5.2. Implantation

(8) Capteur de position de soupape.

(22) Cible.

3.5.3. Description

La cible (22), constituée d'un aimant permanent est vissée en bout de l'arbre à cames intermédiaire (19). Le capteur de position de soupapes (8), délivre 2 signaux sous l'influence du champ magnétique de la cible. Le premier signal donne la valeur de l'angle "e" allant de 0° à 180°, le second signal est une confirmation qui indique l'angle de 180° à 0°.

Le calculateur moteur utilise l'information angle "e" de l'arbre à cames intermédiaire (19) pour connaître la valeur de levée des soupapes d'admission.

3.5.4. Mode dégradé

Lorsque le capteur de position de soupapes est en défaut ;

- Positionnement des soupapes en levée maximale
- Gestion de l'admission d'air via le boîtier papillon motorisé

3.5.5. Affectation des voies du capteur de levée de soupapes

- Voie 1 : Signal n° 1 de sortie de position d'arbre à cames intermédiaire
- Voie 2 : Non utilisée
- Voie 3 : Alimentation 5V signal n° 1 de position d'arbre à cames intermédiaire
- Voie 4 : Masse de blindage
- Voie 5: Masse
- Voie 6 : Alimentation 5 Volts
- Voie 7 : Alimentation 5V signal n° 2 de position d'arbre à cames intermédiaire
- Voie 8 : Horloge de synchronisation
- Voie 9 : Signal n° 2 de sortie de position d'arbre à cames intermédiaire

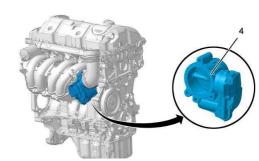
4. Boîtier papillon motorisé

4.1. Rôle

Le système de levée variable de soupapes à l'admission ne nécessite pas de boîtier papillon motorisé pour doser la quantité d'air admis.

Le boîtier papillon motorisé permet :

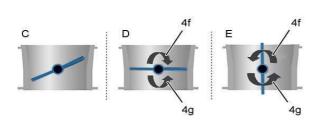
- Une dépression de 50 mbar dans le répartiteur d'admission d'air, nécessaire à l'admission des vapeurs d'essence en provenance du canister et des vapeurs d'huile recyclées.
 - Un mode dégradé en cas de défaillance d'un élément du système de levée de soupapes.
- Un capteur pédale d'accélérateur traduit au calculateur contrôle moteur la demande du conducteur.
- Un double capteur intégré au boîtier papillon motorisé permet au calculateur contrôle moteur de déterminer la position exacte du papillon d'air.


4.2. Implantation

(4) Boîtier papillon motorisé.

Affectation des voies du connecteur :

- Voie 1: Alimentation 5 Volts
- Voie 2 : Signal 2
- Voie 3 : Masse



Examen: M.C	. Maintenance des systè	mes embarqués de l'a	utomobile		
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 7 sur 16

4.3. Mode dégradé

En cas de défaut sur un élément du système de levée de soupape variable, le calculateur contrôle moteur assure la gestion de l'admission d'air par le biais du boîtier papillon motorisé.

"C": Position du papillon au repos (contact coupé) ou position "limp home" en cas de défaillance.

"D": Position du papillon des gaz contact mis ou régime de ralenti.

"E": Position du papillon plein gaz.

(4f) Force du moteur du papillon.

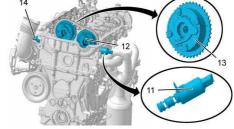
(4q) Force du ressort.

Contact coupé, le ressort de "limp home" maintient le papillon ouvert (Voir "C"). Dès la mise du contact, le calculateur moteur pilote le papillon en position de ralenti, en contrant la force du ressort de "limp home" (Voir "D"). Moteur au ralenti le papillon des gaz se déplace pour fournir le débit d'air nécessaire au moteur (remplace le moteur pas à pas de régulation de ralenti). À partir de 1500 tr/mn le calculateur moteur pilote le papillon des gaz dans l'autre sens pour aider le ressort de "limp home" (Voir "E"). La position du papillon des gaz est surveillée par le calculateur contrôle moteur (potentiomètre intégré au boîtier papillon). Le calculateur moteur coupe

IMPERATIF: Ne pas tenter de régler ou démonter un boîtier papillon (sécurité).

l'alimentation du boîtier papillon en présence de certains défauts.

5. Déphasage d'arbres à cames

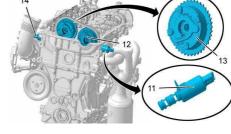

Le déphasage des arbres à cames est réalisé à partir des informations des capteurs référence cylindre, du capteur régime moteur, du capteur de position de soupapes.

Le calculateur contrôle moteur pilote les électrovannes de commande des déphaseurs d'arbres à cames pour faire varier la position des déphaseurs d'arbres à cames.

Les déphaseurs d'admission et d'échappement fonctionnent de manière similaire mais sont gérés indépendamment l'un de l'autre.

5.1. Implantation

- (12) Déphaseur d'arbre à cames échappement.
- (13) Déphaseur d'arbre à cames d'admission.
- (11), (14) Électrovannes de commande de déphaseur d'arbre à cames.


5.2. Rôle

Fonctions des déphaseurs d'arbres à cames :

- Déphaser les arbres à cames par rapport à leur entraînement dans certaines phases de fonctionnement moteur (décalage de l'arbre à cames d'admission de 35° maximum, décalage de l'arbre à cames d'échappement de 30 maximum)
 - Adapter le remplissage en air à la charge du moteur
 - Faciliter le balayage de la chambre de combustion
 - Améliorer le rendement moteur en charge partielle
 - Réduire les émissions polluantes
 - Améliorer les performances du moteur (particulièrement le couple moteur à bas régime)

NOTA : Les électrovannes de commande de déphasage d'arbre à cames ne sont pas commandées pour une température d'huile inférieure à -10°C.

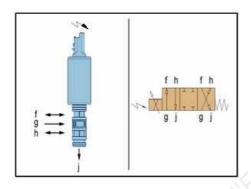
Examen: M.C	. Maintenance des systè	mes embarqués de l'a	utomobile		
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 8 sur 16

5.3. Mode dégradé

Lorsque le calculateur moteur détecte un défaut sur le système de déphasage d'arbre à cames, (défaut capteur de référence cylindre, défaut électrovanne,...), il adopte un mode dégradé.

Rôle : Le calculateur contrôle :

- Positionnement des soupapes en levée maximale
- Gestion de l'admission d'air via le boîtier papillon motorisé
- Ne pilote plus les électrovannes de déphasage d'arbres à cames


5.4. Électrovanne de commande de déphasage d'arbre à cames (1268 et 1243)

5.4.1. Rôle

Le calculateur moteur pilote les électrovannes de commande des déphaseurs d'arbres à cames (1268), (1243) en fonction du régime moteur, de la charge moteur et de la position des soupapes d'admission.

Les électrovannes de commande des déphaseurs d'arbres à cames (1268), (1243) commandent hydrauliquement les déphaseurs d'arbres à cames.

5.4.2. Description

- "f": Alimentation ou retour d'huile moteur des chambres du déphaseur d'arbre à cames.
- "g": Arrivée de l'huile moteur sous pression dans l'électrovanne de commande du déphaseur d'arbre à cames.
- "h": Alimentation ou retour d'huile moteur des chambres du déphaseur d'arbre à cames.
- "i": Retour d'huile vers le carter d'huile moteur.

5.4.3. Particularités électriques

Affectation des voies du connecteur :

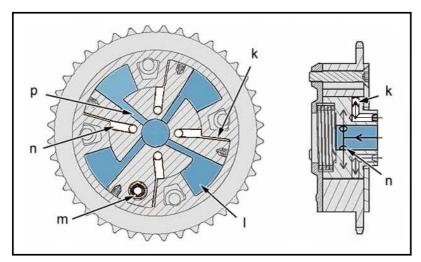
- Voie 1 : Rapport cyclique d'ouverture (RCO)
- Voie 2: 12 volts
- Résistance du bobinage à 20 °C : 7,2 ± 0,4 ohms

NOTA : Le croisement des soupapes d'admission et d'échappement se produit uniquement entre la phase échappement et la phase admission.

5.5. Déphaseur d'arbre à cames

5.5.1. Description

Les déphaseurs d'arbres à cames sont commandés par la pression de l'huile moteur. Les électrovannes de commande des déphaseurs d'arbres à cames (1268), (1243) distribuent


l'huile moteur sous pression dans les 4 chambres "k" ou les 4 chambres "I".

La différence de pression d'huile entre les chambres "k" et "I" décale l'arbre à cames.

Si le déphaseur d'arbre à cames d'admission augmente le retard fermeture admission, l'avance ouverture admission est proportionnellement diminuée.

Si le déphaseur d'arbre à cames d'admission augmente le retard fermeture échappement, l'avance ouverture échappement est proportionnellement diminuée.

Examen : M.C	. Maintenance des sy	stèmes embarqués de l'	automobile			
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 9 sur 16	

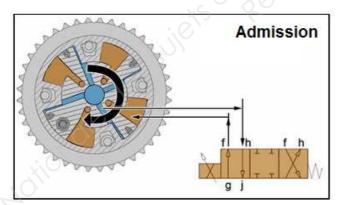
"**k**" : Chambre du déphaseur d'arbre à cames .

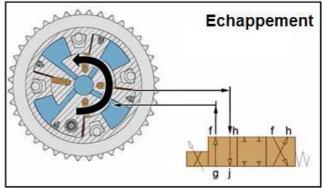
"I" : Chambre du déphaseur d'arbre à cames .

"m": Pion de verrouillage du déphaseur d'arbre à cames (moteur non tournant).

"n": Canal d'alimentation et de retour des chambres ("k").

"p": Canal d'alimentation et de retour des chambres ("I").

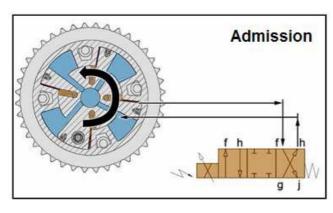

NOTA: Le pion "m" verrouille la position du déphaseur d'arbre à cames quand la pression d'huile est faible. Le pion"m" déverrouille la position du déphaseur d'arbre à cames dès que la pression d'huile dans la chambre "k" atteint environ 0,5 bar.

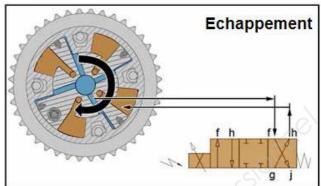

5.5.2. Position du retard fermeture admission (RFA) maximale - Avance ouverture échappement (AOE) (Avance maximum)

NOTA: Le retard fermeture admission (**RFA**) est <u>maximal</u> lorsque l'électrovanne de commande du déphaseur d'arbre à cames <u>n'est pas alimentée</u>; (l'avance à l'ouverture admission (**AOA**) est minimale lorsque l'électrovanne de commande du déphaseur d'arbre à cames n'est pas alimentée). L'avance ouverture échappement (**AOE**) est <u>maximale</u> lorsque l'électrovanne de commande du déphaseur d'arbre à cames <u>n'est pas alimentée</u> (le retard à la fermeture échappement (**RFE**) est minimal lorsque l'électrovanne de commande du déphaseur d'arbre à cames n'est pas alimentée).

Le retard fermeture admission (RFA) est augmenté dans les cas suivants :

- Régime moteur élevé et en charge : Le déphaseur d'arbre à cames d'admission retarde la fermeture des soupapes d'admission pour favoriser le remplissage en air.




- Régime de ralenti : Le déphaseur d'arbre à cames d'admission retarde la fermeture des soupapes d'admission pour diminuer l'avance à l'ouverture admission (**AOA**) et diminuer ainsi le croisement des soupapes d'admission et d'échappement (meilleure combustion).

Dans cette position les électrovannes (1243 et/ou 1268) ne sont pas alimentées et autorisent l'entrée de l'huile sous pression (f) dans les chambres de travail du déphaseur variable d'un coté des palettes et le retour (h) de l'autre. Le déséquilibre de pression entraîne le moyeu et l'arbre à cames en rotation jusqu'en <u>butée maxi</u>.

5.5.3. Position du retard fermeture admission (RFA) minimale - Avance ouverture échappement (AOE) (Avance minimum)

Examen: M.C	. Maintenance des systè	mes embarqués de l'a	utomobile		
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 10 sur 16

Pour aller dans la position mini, le Calculateur Moteur Multifonctions alimente l'électrovanne (1243 ou 1268). Ceci inverse l'alimentation (f) et le retour (h) de l'huile de part et d'autre des palettes.

5.5.4. Position stabilisée

Les électrovannes de commande des déphaseurs d'arbres à cames (1268), (1243) stabilisent la position des déphaseurs d'arbres à cames en alimentant alternativement les chambres "h", "I" de chaque déphaseur.

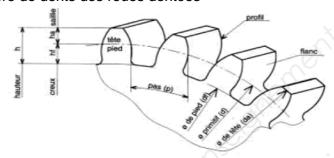
6. Liaisons mécaniques :

	Degrés		Symbole	•	
Nom de la liaison	de liberté (d.d.l)	Mouvements relatifs	Représentation plane	Perspective	Exemples
Encastrement ou Fixe	0	0 Translation 0 Rotation	<u>lo</u> gi	\rangle	Pièces assemblées par vis
Pivot	1	0 Translation 1 Rotation	+	D	(Principe)
Glissière	1	1 Translation 0 Rotation	1		(Principe)
Hélicoïdale	1	1 Translation 1 Rotation Translation et rotation conjuguées	00 00	STATE OF THE PARTY	(vis + Ecrou)
Pivot glissant	વ	1 Translation 1 Rotation	8	0	(Principe)
Sphérique à doigt	2	0 Translation 2 Rotation	0	D	
Appui plan	3	2 Translation 1 Rotation	+		
Rotule ou sphérique	3	0 Translation 3 Rotation	0	Q	
Linéaire annulaire ou sphère-cylindre	4	1 Translation 3 Rotation		0	
Linéaire rectiligne	4	2 Translation 2 Rotation	* *		9
Ponctuelle ou Sphère-plan	5	2 Translation 3 Rotation	ou N	\$	9

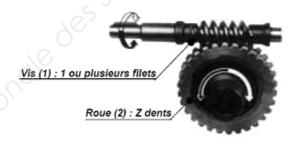
Examen : M.C. Maintenance des systèmes embarqués de l'automobile					
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 11 sur 16

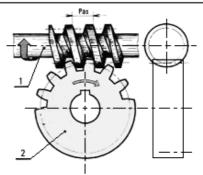
7. Calculs:

La vitesse est égale à la distance divisée par le temps :


$$V (m/s) = \frac{d (m)}{t (s)}$$

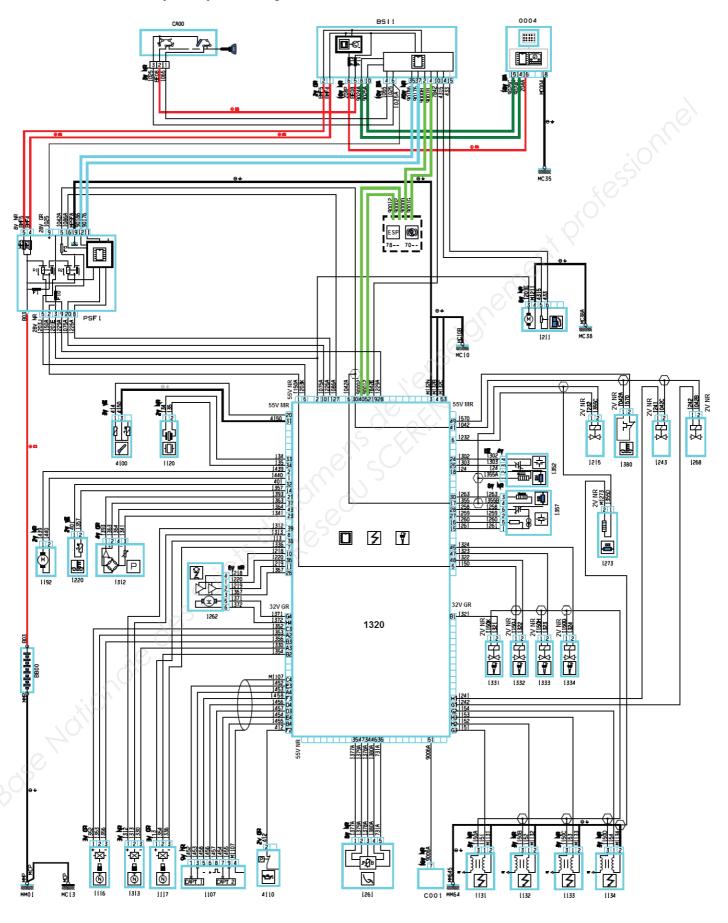
Rapport de transmission d'un engrenage :


 $r = \frac{N \text{ (roue menée)}}{N \text{ (roue menante)}} = \frac{Z \text{ (roue menante)}}{Z \text{ (roue menée)}} = \frac{d \text{ (roue menée)}}{d \text{ (roue menée)}}$


Avec: - N la vitesse en tr/min

- Z le nombre de dents des roues dentées

_		PIGNON ou ROUE	ROUE INTERIEURE (Couronne)		
Module	m	Déterminé par un calcul de résista	ance des matériaux		
Nombre de dents	z	Nombre entier	Nombre entier		
Pas	р	p = m . π			
Saillie	ha	ha = m			
Creux	hf	hf = 1,25 m			
Hauteur de dent	h	h = ha + hf = 2,25 m			
Diamètre primitif	d	d = m . z			
Diamètre de tête	da	da = d+2 ha = d + 2 m = m . (z + 2	2)		
Diamètre de pied	df	df = d-2 hf = d - 2,5 m = m . (z - 2	2,5)		
Entraxe de 2 roues A et B	а	$a = \frac{(dA + dB)}{2} =$	_		

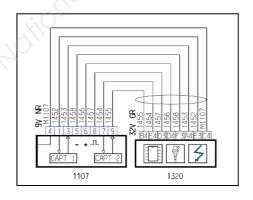

Rapport de transmission d'un engrenage roue et vis sans fin :

 $r = \frac{n \text{ (roue)}}{n \text{ (vis)}} = \frac{\text{Nombre de filet de la vis}}{\text{Nombre de dents de la roue}}$

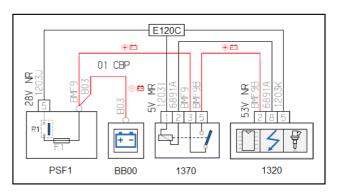
Avec n la vitesse en Tr/min

Examen : M.C. Maintenance des systèmes embarqués de l'automobile					
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 12 sur 16

8. Schéma de principe de l'injection BOSCH MEV 17.4



Examen : M.C. Maintenance des systèmes embarqués de l'automobile					
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 13 sur 16


Référence	N°	Elément
	0004	Combiné
	1020	Alternateur
	1107	Capteur position soupape variable
	1116	Capteur référence cylindre 1 (admission)
	1117	Capteur référence cylindre 2 (échappement)
	1120	Capteur de cliquetis
	1131/1132/1133/1134	Bobine d'allumage N°1, 2, 3 et 4
	1192	Actionneur arbre intermédiaire
	1211	Pompe jauge à carburant
	1215	Electrovanne purge canister
	1220	Capteur température liquide de refroidissement
	1243	Electrovanne de distribution variable 1 (admission)
	1261	Capteur position pédale accélérateur
	1262	Boîtier papillon motorisé
	1268	Electrovanne de distribution variable 2 (échappement)
	1312	Capteur de pression tubulure admission aval papillon
	1313	Capteur position et régime moteur
	1320	Calculateur Moteur Multifonctions
	1331/1332/1333/1334	Injecteur cylindre N°1, 2, 3 et 4
	1352	Sonde à oxygène avant aval
	1357	Sonde à oxygène proportionnelle
	1380	Thermostat piloté
	1370	Relais actionneur arbre intermédiaire
	1510	Motoventilateur
	2120	Contacteur redondant pédale de freins
	BSI	Boîtier de Servitude Intelligent
	C001	Prise diagnostique
	CV00	Module de commutation sous volant
	PSF1	Platine de Servitude boîte à Fusibles compartiment moteur
	2120	Contacteur redondant pédale de freins
	4100	Capteur de niveau d'huile moteur
	4110	Manocontact huile moteur
	6570	Calculateur airbag
	7215	Ecran multifonctions
	7306	Contacteur de pédale embrayage
	7800	Calculateur ESP
	8007	Capteur pression fluide réfrigérant
	BB00	Batterie

9. Schémas divers

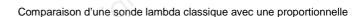
Capteur de levée de soupapes

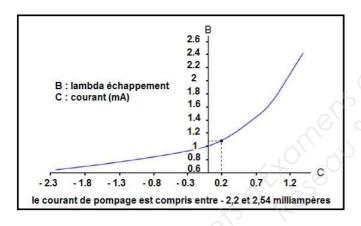
Relais actionneur arbre intermédiaire

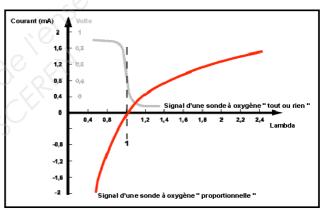
Examen: M.C	. Maintenance des syst	èmes embarqués de l'a	utomobile		
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 14 sur 16

10. Sondes à oxygène

10.1. Rôle de la sonde lambda proportionnelle :


La sonde à oxygène proportionnelle détermine le taux d'oxygène des gaz d'échappement et


12


déduit la richesse exacte du mélange, ce qui permet de mieux contrôler le remplissage du

- moteur.
- "a" Canal d'arrivée des gaz d'échappement.
- (7) Cellule de pompage.
- (8) Chambre de mesure.
- (9) Cellule de NERST.
- (10) Cavité de référence.
- (11) Résistance de chauffage.
- (12) Électrode.

L'oxygène contenu dans la sonde à oxygène est pompé dans les gaz d'échappement par un courant de pompage et est conservé dans la chambre de mesure.

La cellule de *NERST* (9) compare l'oxygène de la chambre de mesure à l'oxygène de la cavité de référence.

Pour avoir un lambda de 1 l'oxygène de la chambre de mesure (8) doit être égal à l'oxygène de la cavité de référence (10).

La valeur du courant de pompage est liée au flux d'oxygène provenant des gaz d'échappement, nécessaire pour régénérer l'oxygène dans la chambre de mesure (8) et avoir un lambda de 1.

Lorsque lambda est supérieur à 1 dans la chambre de mesure (8) le courant de pompage est <u>positif</u>, l'oxygène en excédent contenu dans la chambre est prélevé pour être envoyé vers les gaz d'échappement.

Lorsque le lambda est inférieur à 1 dans la chambre de mesure (8) le courant de pompage est négatif, l'oxygène manquant est prélevé des gaz d'échappement vers la chambre de mesure.

Le calculateur moteur détermine en fonction du courant de pompage nécessaire au maintien du lambda de 1, la valeur exacte du signal lambda et ainsi calcule la richesse du mélange air/essence.

Exemple:

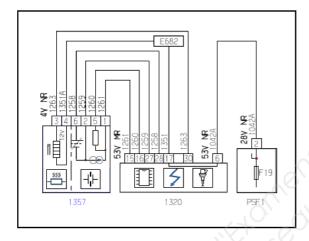
Courant de pompage : = 0,2 milliampères ce qui correspond à un signal lambda de 1,1.

Examen : M.C. Maintenance des systèmes embarqués de l'automobile					
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 15 sur 16

Le signal lambda permet de déterminer la valeur exacte de la richesse.

Richesse = 1/signal lambda

Richesse = 1 (mélange stoechiométrique).


Richesse = 1/1.1 (mélange pauvre). Richesse = 1/0,91 (mélange riche).

Le calculateur moteur régule la richesse en faisant varier le temps d'injection pour être le plus près possible du dosage stoechiométrique (Signal lambda = 1).

La sonde à oxygène contient un dispositif de réchauffage interne qui lui permet d'atteindre rapidement sa température de fonctionnement (+ 650 °C).

10.2. Particularités électriques (sonde proportionnelle)

Sonde lambda proportionnelle (amont)

Affectation des voies du connecteur :

_ Voie N°1 : Information courant de pompage sonde à oxygène proportionnelle (amont)

_ Voie N°2 : Signal (-) : Sonde à oxygène proportionnelle amont

Voie N°3: Commande chauffage sonde à oxygène proportionnelle amont

Voie N°4: Alimentation +12 Volts: Commande chauffage sonde à oxygène proportionnelle amont

_ Voie N°5 : Information résistance compensation sonde à oxygène proportionnelle

_Voie N°6 : Signal (+) : Sonde à oxygène

proportionnelle amont

Examen : M.C. Maintenance des systèmes embarqués de l'automobile						
Épreuve : E1	Etude technique	Session 2012	3 heures	Coef: 3	Page 16 sur 16	