

Ce document a été numérisé par le <u>CRDP de Bordeaux</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel.

Campagne 2012

BREVET DE TECHNICIEN SUPÉRIEUR INFORMATIQUE DE GESTION

Options : - Développeur d'applications

- Administrateur de réseaux locaux d'entreprise

SESSION 2012

SUJET

ÉPREUVE EF2 – MATHÉMATIQUES II

Epreuve facultative

Durée: 1 heure

coefficient: 1

Calculatrice autorisée, conformément à la circulaire n° 99-186 du 16 novembre 1999 :

« Toutes les calculatrices de poche, y compris les calculatrices programmables, alphanumériques ou à écran graphique, à condition que leur fonctionnement soit autonome et qu'il ne soit pas fait usage d'imprimante, sont autorisées.

Les échanges de machines entre candidats, la consultation des notices fournies par les constructeurs ainsi que les échanges d'informations par l'intermédiaire des fonctions de transmission des calculatrices sont interdits ».

Dès que le sujet vous est remis, assurez-vous qu'il est complet. Il comprend :

- 2 pages numérotées de la page 1/2 à 2/2 ;
- le formulaire de mathématiques composé de 4 pages.

Exercice 1 (11 points)

Les parties A et B peuvent être traitées de façon indépendante.

Partie A

On considère les deux équations différentielles : (E) : $y'-2y=4x^2-4x$ et (E₀) : y'-2y=0, où y est une fonction définie et dérivable sur R.

- 1. Résoudre l'équation différentielle (E_0) .
- 2. Montrer qu'il existe un réel a tel que la fonction f définie pour tout réel x par $f(x) = ax^2$ est solution de l'équation différentielle (E).
- Partie B
 Soit la fonction g définie pour tout réel x par : $g(x) = e^{2x} 2x^2$.

 1. a) Donner le développement limité à l'ordre 3 de e^{2x} b) En déduire que le dével

$$g(x) = 1 + 2x + \frac{4}{3}x^3 + x^3\varepsilon(x)$$
, avec $\lim_{x\to 0} \varepsilon(x) = 0$.

- 2. On note (Γ) la courbe représentative de la fonction g, et (T) sa tangente au point d'abscisse 0.
 - a) Déduire de la question précédente une équation de la tangente (T).
 - b) Donner les positions relatives de (T) et de la courbe (Γ) au voisinage du point de contact.

Exercice 2 (9 points)

Dans cet exercice, toutes les probabilités seront arrondies au centième.

La durée de vie d'un composant électronique est une variable aléatoire T qui suit une loi exponentielle. Sa durée de vie moyenne (MTBF) est 392 jours.

- 1. Déterminer la valeur du paramètre λ de cette loi, arrondi à la cinquième décimale.
- 2. Calculer la probabilité que ce composant tombe en panne au cours de la première année. On considère qu'une année compte 365 jours.
- 3. Calculer la probabilité que ce composant fonctionne encore au bout de trois ans.
- 4. Déterminer le plus grand nombre de jours n, tel que la probabilité que ce composant fonctionne encore au bout de ces n jours soit supérieure ou égale à 0,95.
- 5. Pour améliorer la fiabilité du système, on décide de monter 6 composants analogues en parallèle. On rappelle que, dans ce cas, le montage est en panne lorsque tous les composants le sont. On suppose que les pannes sont indépendantes.
 - a) Calculer la probabilité pour qu'un tel montage ait une panne au cours de la première année.
 - b) Quelle est la probabilité qu'un tel montage fonctionne encore au bout d'un an?

FORMULAIRE DE MATHEMATIQUES

BTS INFORMATIQUE DE GESTION

1. RELATIONS FONCTIONNELLES:

$$\ln(ab) = \ln a + \ln b$$
, où $a > 0$ et $b > 0$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^{t} = e^{t \ln a}$$
, où $a > 0$
 $t^{\alpha} = e^{\alpha \ln t}$, où $t > 0$

2. CALCUL DIFFERENTIEL ET INTEGRAL

a) Limites usuelles

Comportement à l'infini

$$\lim_{t\to+\infty} \ln t = +\infty ;$$

$$\lim_{t\to +\infty} e^t = +\infty ;$$

$$\lim_{t\to-\infty}e^t=0;$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Comportement a torigine

Si
$$\alpha > 0$$
, $\lim_{\alpha \to 0} t^{\alpha} = 0$;

si
$$\alpha < 0$$
, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

Croissances comparées à l'infini

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

b) Dérivées et primitives :

Fonctions usuelles

f(t)	f'(t)
lnt	. 1
c⊗ e ^t	e ^t
$t^{\alpha} \ (\alpha \in \mathbb{R}^*)$	$\alpha t^{\alpha-1}$

<u>Opérations</u>

$$(u+v)'=u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v + uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v - uv}{v^2}$$

$$(v \circ u)' = (v' \circ u)u$$

$$\left(e^{u}\right)'=e^{u}u'$$

$$(\ln u)' = \frac{u'}{u}$$
, u à valeurs strictement positives

$$\left(u^{\alpha}\right)' = \alpha u^{\alpha - 1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]:
$$\frac{1}{b-a} \int_a^b f(t) dt$$

Intégration par parties (PROGRAMME FACULTATIF) :
$$\int_{a}^{b} u(t) \ v'(t) \ \mathrm{d} \ t = \left[u(t) v(t) \right]_{a}^{b} - \int_{a}^{b} u'(t) \ v(t) \ \mathrm{d} \ t$$

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon (t)$$

$$\frac{1}{1+t} = 1 - t + t^{2} + \dots + (-1)^{n} t^{n} + t^{n} \varepsilon (t)$$

$$\ln(1+t) = t - \frac{t^{2}}{2} + \frac{t^{3}}{3} + \dots + (-1)^{n-1} \frac{t^{n}}{n} + t^{n} \varepsilon (t)$$

$$\sin t = \frac{t}{1!} - \frac{t^{3}}{3!} + \frac{t^{5}}{5!} + \dots + (-1)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$$

$$\cos t = 1 - \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{p} \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon (t)$$

$$(1+t)^{\alpha} = 1 + \frac{\alpha(\alpha-1)}{1!} t + \frac{\alpha(\alpha-1)}{2!} t^{2} + \dots + \frac{\alpha(\alpha-1) \dots (\alpha-n+1)}{n!} t^{n} + t^{n} \varepsilon (t)$$

d) Développements limit	és (PROGRAMME FACULTATIF)
$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + \dots$	$t^n \varepsilon(t)$
$\frac{1}{1+t} = 1 - t + t^2 + \dots + (-1)^{t}$	$(t)^n t^n + t^n \varepsilon (t)$
$\ln(1+t) = t - \frac{t^2}{2} + \frac{t^3}{3} + \cdots$	$+(-1)^{n-1}\frac{t^n}{n}+t^n\varepsilon(t)$
$\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + ($	$-1)^{p} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$
$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + \left(-\frac{t^2}{2!} + \frac{t^4}{4!} + \dots +$	$1)^{p}\frac{t^{2p}}{(2p)!}+t^{2p}\varepsilon\left(t\right)$
$(1+t)^{\alpha} = 1 + \frac{\alpha}{t} + \frac{\alpha(\alpha-1)}{t^2}$	$-\cdots + \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}t^n + t^n \epsilon(t)$
[] 21	n1
21	n1
	es (PROGRAMME FACULTATIF)
	es (PROGRAMME FACULTATIF) Solutions sur un intervalle I
e) Équations différentiel	es (PROGRAMME FACULTATIF) Solutions sur un intervalle I $f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$

3. PROBABILITES :

a) Loi binomiale
$$P(X = k) = C_n^k p^k q^{n-k}$$
 où $C_n^k = \frac{n!}{k!(n-k)!}$;
 $E(X) = np$ $\sigma(X) = \sqrt{npq}$

b) Loi de Poisson

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}$$
$$E(X) = \lambda$$
$$V(X) = \lambda$$

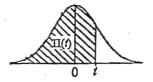
I A	0,2	0,3	0,4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,9072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0003
6	X		0,0000	0,0000	0,0000

k l	1	1.5	2	3	4	5	06	7	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0,002	100.0	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0,001	0.000
. 2	0.184	0.251	6.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	800.0
4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	6761	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8	·	0.000	0.001	0.008	0.030	0.065	0.103	0.130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0.132	0.125
10				0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
n				0.000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12	_\{	<i>></i>	,		0.001	0.003	0.011	0.026	0.048	0.073	0.095
13	7				0.000	0.001	0.005	0.014	0.030	0.050	0.073
14	0					0.000	0.002	0.007	0.017	0.032	0.052
15	7						0.001	0.003	0.009	0.019	0.035
16							0.000	0.001	0.005	0.011	0.022
17								0.001	0.002	0,006	0.013
18								0.000	0.501	6.003	0.007
19			ľ				·		0.000	0.001	0.004
20	ļ									0.001	0.002
21										0.000	0.001
22											0.000

c) Loi exponentielle (PROGRAMME FACULTATIF)

Fonction de fiabilité : $R(t) = e^{-\lambda t}$

 $E(X) = \frac{1}{\lambda}$ (M.T.B.F.)


 $\sigma(X) = \frac{1}{\lambda}$

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

extraits de la table de la fonction integrale de la loi normale centree, reduite $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

	.0									
t	0,00	0,01	0,02	0,03	0,04	0,05	0,06	0,07	0,08	0,09
0,0	0,500 0	0,504 0	0,508 0	0,512 0	0,5160	0,519 9	0,523 9	0,527 9	0,531 9	0,535 9
0,1	0,539 8	0,543 8	0,5478	0,5517	0,555 7	0,559 6	0,563 6	0,567.5	0,571 4	0,575 3
0,2	0,579 3	0,583 2	0,5871	0,5910	0,594 8	0,598 7	0,602 6	0,6064	0,610 3	0,6141
0,3	0,6179	0,621 7	0,6255	0,629 3	0,633 1	0,636 8	0,640 6	0,6443	0,648 0	0,6517
0,4	0,655 4	0,659 1	0,6628	0,6664	0,670 0	0,673 6	0,6772	0,680 8	0,684 4	0,6879
0,5	0,691 5	0,695 0	0,698 5	0,7019	0,705 4	0,708 8	0,712.3	0,7157	0,719 0	0,722.4
0,6	0,725 7	0,729 0	0,732 4	0,7357	0,738 9	0,742 2	0,7454	0,748 6	0,751 7	0,7549
0,7	0,758 0	0,761 1	0,7642	0,7673	0,770 4	0,773 4	0,7764	0,779 4	0,782 3	0,7852
0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802.3	0,8051	0,8078	0,810 6	0,8133
0,9	0,8159	0,818 6	0,821 2	0,823 8	0,825.4	0,828 9	0,831 5	0,834 0	0,8365	0,838 9
				'		2				
1,0	0,841 3	0,843 8	0,8461	0,8485	0,850 8	0,853 1	0,855 4	0,857 7	0,859 9	0,8621
1,1	0,8643	0,866 5	0,868 6	0,8708	0,872.9	0,874 9	0,877 0	0,879 0	0,881 0	0,883.0
1,2	0,884 9	0,886 9	0,888 8	0,8907	0,892 5	0,894 4	0,8962	0,898 0	0,8997	0,9015
1,3	0,903 2	0,904 9	0,9066	0,9082	0,909 9	0,911 5	0,9131	0,914 7	0,9162	0,9177
1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,9265	0,9279	0,929 2	0,930 6	0,931.9
1,5	0,933 2	0,934 5	0,9357	0,9370	0,938 2	0,939 4	0,940 6	0,941 8	0,9429	0,9441
1,6	0,945 2	0,9463	0,947 4	0,948.4	0;949 5	0,950 5	0,951.5	0,952 5	0,953 5	0,9545
1,7	0,955 4	0,956 4	0,9573	0,958 2	0,959 1	0,959 9	0,960 8	0,961 6	0,962.5	0,9633
1,8	0,9641	0,964 9	0,965 6	0,9664	0,9671	0,9678	9,968 6	0,969 3	0,969 9	0,970 6
1,9	0,9713	0,9719	0,972 6	0,9732	0,973 8.	0,974 4	0,975 0	0,975 6	0,9761	0,9767
		D-								
2,0	0,977.2	0,977 9	0,978.3	0,9788	0,979 3	0,979 8	0,9803	0,980 8	0,9812	0,9817
2,1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,9846	0,985 0	0,985 4	0,9857
2,2	0,9861	0,9864	0,9868	0,9871	0,987 5	0,9878	0,9881	0,988 4	0,9887	0,989,0
2,3	0,9893	0,989 6	0,989 8	0,9901	0,990 4	0,990 6	0,990 9	0,991 1	0,9913	0,991 6
2,4	0,9918	0,992 0	0,992 2	0,9925	0,992 7	0,992 9	0,9931	0,993 2	0,993 4	0,993 6
2,5	0,993 8	0,994 0	0,994 1	0,9943	0,994 5	0,994 6	0,9948	0,994 9	0,9951	0,9952
2,6	0,9953	0,995 5	0,995 6	0,9957	0,995 9	0,996 0	0,9961	0,9962	0,9963	0,9964
2,7	0,9965	0,996 6	0,9967	0,9968	0,9969	0,997 0	0,9971	0,9972	0,997.3	0,9974
2,8	0,9974	0,9975	0,997 6	0,9977	0,997 7	0,9978	0,9979	0,9979	0,9980	0,9981
2,9	0,9981	0,998 2	0,998 2	0,9983	0,998 4	0,998 4	0,9985	0,998 5	0,998 6	0,998 6

TABLE POUR LES GRANDES VALEURS DE !

t	3,0	3,1	3,2	3,3	3,4	3,5	3,6	3,8	4,0	4,5
П(л)	0,998 65	0,999 04	0,999 31	0,999 52	0,999 66	0,999 76	0,999 841	0,999 928	0,999 968	0,999 997

Nota: $\Pi(-t)=1-\Pi(t)$