

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

BACCALAURÉAT PROFESSIONNEL INDUSTRIES DE PROCÉDÉS

SESSION 2012

ÉPREUVE E2: ÉPREUVE TECHNOLOGIQUE

Sous-épreuve A2 : ÉTUDE ET CONDUITE DES OPÉRATIONS UNITAIRES

DOSSIER RESSOURCES

Le dossier se compose de 9 pages, numérotées de 1/9 à 9/9. Dès que le dossier vous est remis, assurez-vous qu'il est complet.

DOSSIER RESSOURCES				
BACCALAURÉAT PROFESSIONNEL E2 : Épreuve technologique				
INDUSTRIES DE PROCÉDÉS	Sous-épreuve A2 : Étude et conduite des			
	opérations unitaires			
Session : 2012	Coef : 3	Durée : 4 heures		
Repère : 1206-IPT21	Ce dossier comporte 9 pages	Page 1 /9		

TABLE DES MATIÈRES

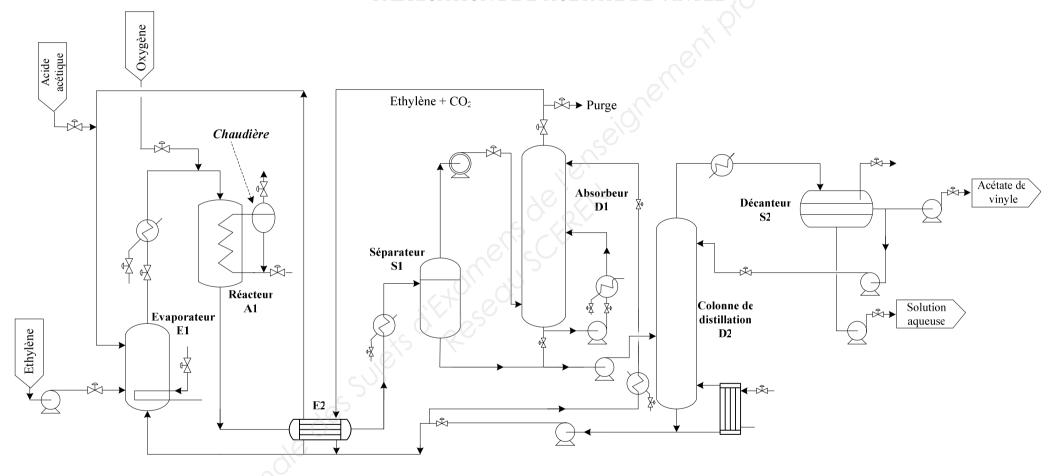
* Description de procédé	Page 3 /9
* Schéma de procédé	Page 4 /9
* Annexe I - Colonne d'absorption de l'acétate de vinyle.	Page 5 /9
* Annexe II - Isolement du détecteur transmetteur	Page 6 /9
* Annexe III - Bilan molaire sur le réacteur A1	Page 7 /9
* Annexe IV - Bilan thermique sur le réacteur A1 (Schéma de procédé)	Page 8 /9
* Annexe V - Caractéristiques de la pompe et du réseau d'alimentation de la colonne D2	Page 9 /9

FABRICATION DE L'ACÉTATE DE VINYLE

DESCRIPTION DU PROCÉDÉ

Utilisation

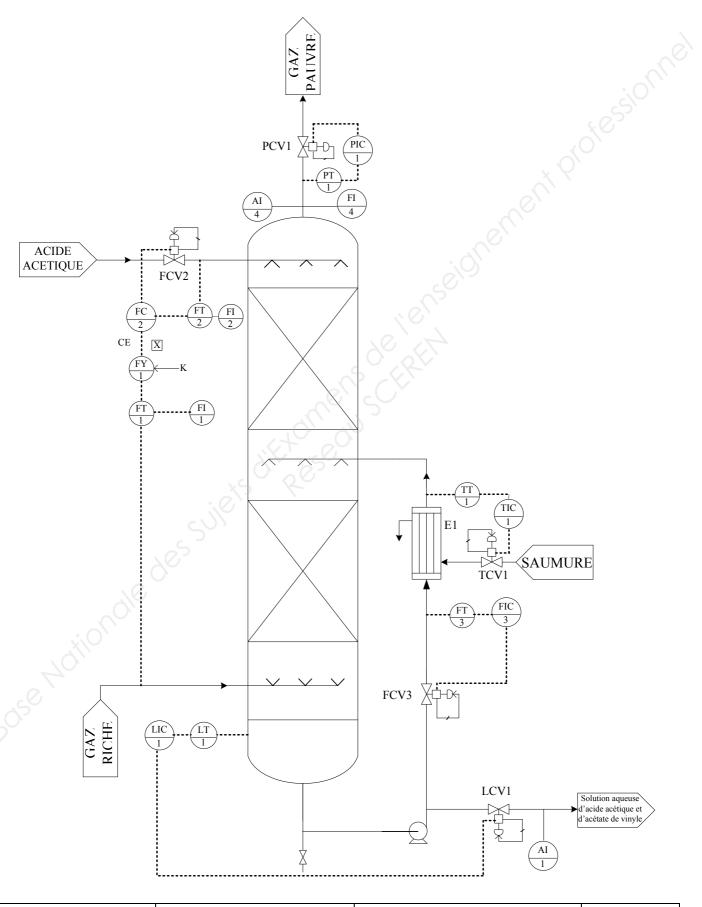
Fabrication de polymères utilisés dans la production d'adhésifs, de peintures, d'emballages alimentaires


Réaction d'obtention de l'acétate de vinyle :

Description du procédé

Le mélange (l'acide acétique frais et de recyclage ainsi que l'éthylène) est vaporisé et préchauffé à 150°C sous une pression de 9 bar dans l'évaporateur (E1). Il est ensuite mélangé avec l'oxygène avant d'être introduit dans le réacteur (A1). La réaction est exothermique. L'effluent gazeux issu de la réaction (160°C et sous une pression de 6 bar), con tenant l'acétate de vinyle, la vapeur d'eau, le gaz carbonique, l'acide acétique et l'éthylène non transformés, est refroidi par l'éthylène de recyclage à 130°C dans un économiseur (échangeur (E2) multitubu laire). L'acide acétique n'ayant pas réagi et une partie de l'acétate de vinyle sont partiellement condensés (80°C et sous une pression de 6 bar) et séparés de l'effluent gazeux dans (S1). L'effluent gazeux est comprimé à 9 bar et est envoyé dans une colonne (D1) d'absorption à l'acide acétique.

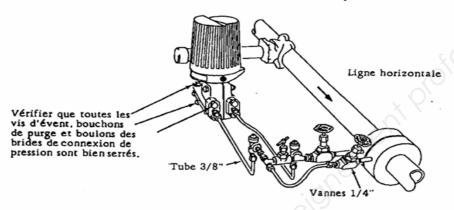
La solution aqueuse d'acide acétique et d'acétate de vinyle récupérée en pied de colonne d'absorption (D1) est purifiée par rectification dans la colonne (D2). L'acide acétique récupéré en pied de colonne (D2) est recyclé dans le procédé. En tête de colonne (D2), l'hétéroazéotrope eau-acétate de vinyle est envoyé dans un décanteur (S2). La phase organique subit une série d'opérations unitaires (non représentées sur le schéma) pour obtenir de l'acétate de vinyle pur. La phase aqueuse est soutirée en vue d'être retraitée. Les gaz résiduels (éthylène, gaz carbonique et de l'oxygène) en tête de colonne d'absorption (D1) sont recyclés dans le procédé.


FABRICATION DE L'ACETATE DE VINYLE

ANNEXE I

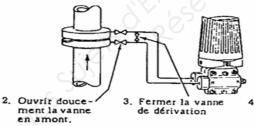
COLONNE D'ABSORPTION DE L'ACÉTATE DE VINYLE

Schéma de l'absorption



ANNEXE II

ISOLEMENT DU DETECTEUR TRANSMETTEUR


CONNEXION POUR MESURE DE DEBIT

La figure représente une installation caractéristique pour mesure de débit

MISE EN SERVICE DU TRANSMETTEUR

1. Fermer les deux vannes de raccordement, puis ouvrir la vanne de dérivation.

Pour isoler le transmetteur, couper l'alimentation et fermer la vanne en aval, puis la vanne en amon Puis ouvrir la vanne de dérivation.

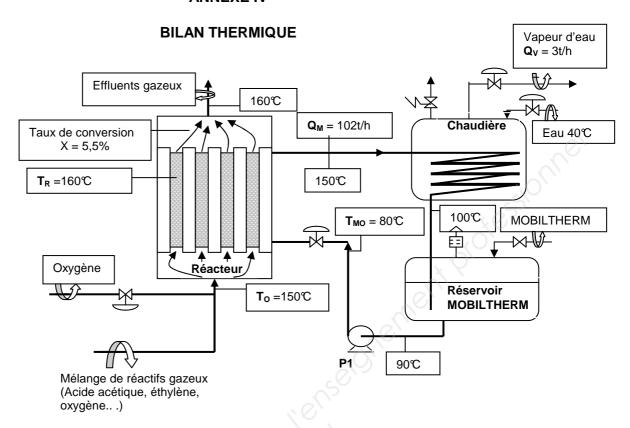
 Ouvrir doucement la vanne en aval

ANNEXE III

BILAN MOLAIRE SUR LE RÉACTEUR A1

Données

Réaction	Équation chimique				
Réaction principale	2 CH ₂ =CH ₂ +	O ₂ +	O 1 I 2 CH ₃ - C – OH →	O 1 1 2 CH ₂ =CH-O-C-CH ₃ + 2 H ₂ O	
	Ethylène	Oxygène	Acide acétique	Acétate de vinyle Eau	
Réaction parasite	CH ₂ =CH ₂ +	3O ₂ →	2 CO ₂ +	2H ₂ O	
	Ethylène	Oxygène	Gaz carbonique	Eau	


Taux de conversion par rapport à CH ₂ =CH ₂	X = 5,5%
Taux de sélectivité	$\sigma = 73,3\%$

	Débit molaire
Réactifs entrant dans le réacteur	Q = 1239 kmol/h
Titre en CH ₂ =CH ₂	x _E = 58,3 % molaire

Taux de conversion	Nombre de mole d'éthylène transformé en acétate de vinyle et en gaz carbonique
	Nombre de mole d'éthylène mise en oeuvre
Sélectivité =	Nombre de mole d'éthylène transformé en acétate de vinyle
	de mole d'éthylène transformé en acétate de vinyle et en gaz carbonique
Dan damant Taux	Nombre de mole d'éthylène transformé en acétate de vinyle de conversion × Sélectivité
Rendement = Taux	Nombre de mole d'éthylène mise en oeuvre

Repère: 1206-IPT21	DOSSIER RESSOURCES	Ce dossier comporte 9 pages	Page 7 /9	
--------------------	--------------------	------------------------------------	------------------	--

ANNEXE IV

Données

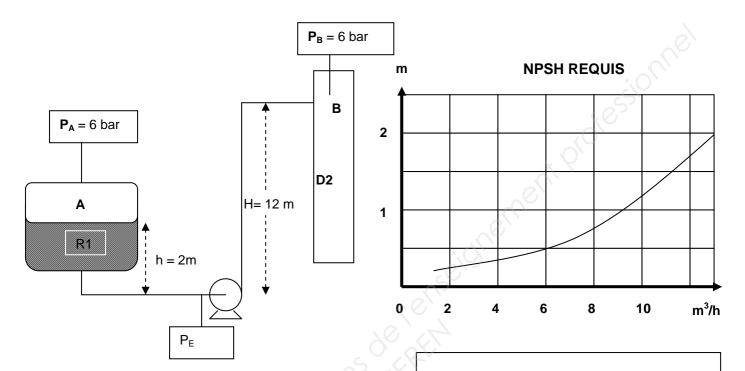
Réaction	Équation chimique	Enthalpie de réaction
Réaction principale	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	ΔH_{R1} = -178kJ/mol
	Ethylène Oxygène Acide acétique Acétate de vinyle Eau	
Réaction parasite	$CH_2=CH_2 + 3O_2 \rightarrow 2CO_2 + 2H_2O$	ΔH_{R2} = -1409kJ/mol
parasite	Ethylène Oxygène Gaz carbonique Eau	

0	Débit molaire	Débit massique		
Réactifs gazeux entrant dans le réacteur	Q = 1239 kmol/h 40t/h			
Titre en CH ₂ =CH ₂	$x_E = 58,3 \%$ molaire	50,6% massique		
Capacité calorifique moyenne du mélange réactionnel (réactifs et effluents gazeux)	C = 2 kJ/kg/℃			
1J/s = 1W et 1 MW = 10 ⁶ W				

Caractéristiques principales du mélange réactionnel

Nom	Ethylène	Ethane	Gaz carbonique	Acide acétique	Oxygène	eau
% molaire des réactifs	58,3%	22,1%	0,7%	11%	7%	0,9%

L'éthylène utilisé contient de l'éthane comme impureté. L'eau et le gaz carbonique proviennent respectivement de l'acide acétique et de l'éthylène recyclés.


Nom	Mélange réactionnel
LIE (% molaire du mélange réactionnel dans l'oxygène)	3,3
LSE (% molaire du mélange réactionnel dans l'oxygène)	92
Température de condensation à 6 bar	130℃

Repère: 1206-IPT21	DOSSIER RESSOURCES	Ce dossier comporte 9 pages	Page 8 /9	
--------------------	--------------------	-----------------------------	------------------	--

ANNEXE V

POMPE D'ALIMENTATION DE LA COLONNE D2

La solution à 40℃, contenue dans un réservoir sép arateur R1 de grande section sous une pression absolue de 6 bar, est reprise par une pompe centrifuge placée en charge.

Données

- Débit : $\mathbf{Q_V} = 9 \text{ m}^3/\text{h}$
- Masse volumique de la solution à 40° C : $\rho = 939 \text{ kg/m}^3$
- Pression de vapeur de la solution à 40°C : $T_V = 17000$ Pa
- Accélération de la pesanteur : g = 9,81 m.s⁻²
- Hauteur de charge : h = 2 m
- Hauteur de refoulement : H = 12m
- Pression dans le réservoir R1 et la colonne D2 :

$$P_A = P_B = 6$$
 bar

- Diamètre intérieur de la canalisation : **Di** = 45 mm
- Coefficient de friction : $\lambda = 0.025$
- Longueur des tuyaux :
 - aspiration $L_A = 5 \text{ m}$
 - refoulement $L_R = 20 \text{ m}$
- Longueur équivalente des pertes de charge singulières :
 - aspiration $L_{EA} = 4 \text{ m}$
 - refoulement L_{ER} = 30 m

FORMULES DE CALCUL Unités Système International

$$S = \frac{\pi \times D^2}{4} \qquad v = Qv / S$$

$$J = \frac{\lambda \times (L + L_E) \times v^2}{2 \times Di \times g}$$

$$P_F = P_A + (h - J_{T1}) \times \rho \times q$$

NPSH disponible =
$$\frac{P_E - T_V}{\rho \times g}$$

$$H_{MT} = \frac{P_B - P_A}{P \times g} + Z_B - Z_A + J_T + \frac{(v_B^2 - v_A^2)}{2 \times g}$$

v_A négligeable devant v_B