

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

Baccalauréat Professionnel " OUVRAGES du BATIMENT : METALLERIE "

SESSION 2012

E.2 - EPREUVE DE TECHNOLOGIE

Sous-Epreuve E.22 - Analyse Technique d'un Ouvrage (U.22)

CE DOSSIER COMPREND :

1 - DOCUMENTS TECHNIQUES COMPLEMENTAIRES

2 - DOSSIER SUJET - REPONSES

AUCUN DOCUMENT N'EST AUTORISE L'USAGE DE LA CALCULATRICE EST AUTORISE CONFORMEMENT A LA CIRCULAIRE N° 99 – 186 DU 16 NOVEMBRE 1999

Bac Professionnel "OUVRAGES du BATIMENT : METALLERIE" Sous-Epreuve E.22 : Analyse Technique d'un Ouvrage (U.22)

session 2012 1206-OBM T 22-1

E.	Académie :	Session:
	Examen:	Série :
	Spécialité/option :	Repère de l'épreuve :
ADI	Epreuve/sous épreuve :	
E	NOM:	
DANS CE CADRE	(en majuscule, suivi s'il y a lieu, du nom d'épouse) Prénoms:	N° du candidat
Ω̈́	Né(e) le :	(le numéro est celui qui figure sur la convocation ou liste d'appel)
RIRE		Appréciation du correcteur
NE RIEN ÉCRIRE	Note:	

Il est interdit aux candidats de signer leur composition ou d'y mettre un signe quelconque pouvant indiquer sa provenance.

E.2 - EPREUVE DE TECHNOLOGIE

Sous-Épreuve E.22 - Analyse Technique d'un Ouvrage (U.22)

Compétences évaluées :

• C1.1 - Décoder et analyser les données de définition.

SUJET

Session 2012

Code :1206-OBM T 22 - 1

VRAGES DU BATIMENT: METALLERIE

se Technique d'un Ouvrage (U.22)

Sous-Épreuve E.22 – Analy

Baccalauréat professionnel OU

- C2.1 Choisir et adapter des solutions techniques.
- C2.2 Établir les plans, tracés et gabarits.

BARE	ME DE CORRECTION :	
Thème 1		/ 15 Pts
Thème 2		/ 15 Pts
Thème 3		/ 15 Pts
Thème 4		/ 20 Pts
Thème 5		/ 15 Pts
Thème 6		/ 40 Pts
Thème 7		/ 20 Pts
Thème 8		/ 30 Pts
Thème 9		/ 30 Pts
A S	<u>TOTAL :</u>	/ 200 Pts

DOSSIER SUJET - REPONSES

Ce dossier comporte 9 pages numérotées de

DS 1/9 à DS 9/9

	,
7	
3	
XIEN	
	_
ECKIKE	
[-	
DAND	/ ►
	2
	1
7	-
FA	J
PAKILE]

Vous devez :	
- Calculer la longueur L Calculer l'angle α .	
Vous disposez de :	
- DT 10 / 13 - DTC 1 / 5	
Zone réponse :	
L =	
$\alpha =$	
Inclinaison optimale des escaliers	Hioroile
Angle de l'escalier : α	805e 75
Pente du limon en %	

Afin de s'assurer que l'escalier respecte bien la norme, on vous demande de vérifier la

Thème 1 : Calculer la pente du limon

longueur et la pente du limon de l'escalier.

Mise en situation:

Thème 2 : Vérifier la hauteur et le giron des marches de l'escalier.

Mise en situation :

Afin d'établir le prix de l'escalier, on vous demande de vérifier si le nombre de marches dessiné par l'architecte est bien conforme à la formule de Blondel.

Vous devez :

- Donner la hauteur à monter.
- Donner le nombre de hauteur de marches.
- Calculer la hauteur entre les marches.
- Vérifier la formule de Blondel.
- Justifier vos calculs.

Vous disposez de :

- DT 02 / 13
- DT 10 / 13
- DT 11 / 13
- DTC 1/5 et DTC 2/5
- Formule de Blondel: 600 mm ≤ 2 Hauteurs + 1 Giron ≤ 640 mm

Zone réponse :

70	Giron	280 mm
2	Hauteur à monter	
	Nombre de hauteurs de marches	
	Hauteur entre marches	
	Formule de Blondel	
	Conclusion	

Baccalauréat professionnel	SILIET SA	Session 2012	Sous-Épreuve E.22 – Analyse Technique d'un Ouvrage (U.22)	
OUVRAGES DU BATIMENT : METALLERIE	SUJET	Session 2012	1206-OBM T 22 - 1	DS 2 / 9

Thème 3 : Calculer la masse de l'escalier.

Mise en situation:

Afin de calculer les charges appliquées à l'escalier, on vous demande dans un premier temps de calculer la masse de l'escalier.

Vous devez :

- Rechercher la masse des différents éléments constituants l'escalier.
- Donner la largeur de la marche
- Calculer la surface de tôle constituant les marches A et B.

Vous disposez de :

- DT 10 / 13
- DT 11 / 13
- DTC 2 / 5
- Rappel: Poids volumique de l'acier: 7850 kg / m³

_	,	
Zone	ren :	onse

Masse des profilés :

Eléments	Profilés	Longueur / Surface	masse/ m masse / m²	Masse
Les limons	Tube 200 x 80 x 4	11,4 m		
La main courante	Plat 50 x 20	6,8 m	7,85 kg / m	53,4 kg
Le barreaudage	Plat 50 x 10	37 m		

Masse des marches :

Tôle gaufrées ep : 3mm bâtonnets type C

Longueur développée de la tôle constituant les marches A et B	1108 mm / 1,108 m
Largeur de la marche	
Surface de tôle constituant les marches (ensemble A et B) en m²	
Masse d'une tôle gaufrée Bâtonnet type C Format 1000 x 2000 x 3	
Masse de la tôle gaufrée au m²	
Masse de la tôle constituant la marche (ensemble A et B)	
Masse des 8 marches (ensemble A et B)	
Masse de la marche C	15,8 Kg

Baccalauréat professionnel OUVRAGES DU BATIMENT : METALLERIE	SUJET	Session 2012	Sous-Épreuve E.22 – Analyse Technique d'un Ouvrage (U.22) 1206-OBM T 22 - 1	DS 3 / 9
---	-------	--------------	--	----------

Thème 4 : Faire le calcul des charges appliquées au limon le plus chargé.

Mise en situation:

Afin de déterminer les forces appliquées au limon le plus chargé (coté garde-corps), il faut procéder au calcul des charges permanentes ainsi qu'aux charges d'exploitation. Vous appliquerez ensuite les coefficients de pondération à ces charges.

Vous devez :

- Définir le poids du limon, et des marches.
- Définir le poids de la rampe.
- Définir le poids total de l'escalier.
- Définir le poids de la charge d'exploitation.
- Définir le poids total pondéré.

Vous disposez de :

- DT 10 / 11
- DTC 3/5 à DTC 4/5
- Rappel : P = m . g

P = poids en Newton (N)

m = Masse en Kg

g = Intensité de la pesanteur

Pour simplifier : 1 kg ≈ 0,981 daN

Zone réponse :

Charges	Eléments	masse Kg	Calcul	Poids en daN
Charges	1 Limon	96 Kg		
permanentes Q	Marches (1/2 longueur)	104Kg		X
	Rampe	199 Kg		SUP

Poids total:

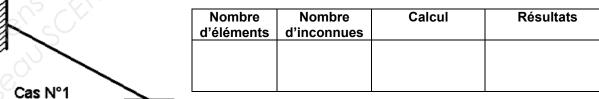
Charges	Surface à prendre en compte	Valeur de la charge : escalier usage habitation	Calcul	Poids en daN De la charge d'exploitation
Charges d'exploitation G	2,5 m²		305e	

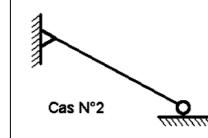
Poids total pondéré :

Thème 5 : Déterminer un système de type isostatique.

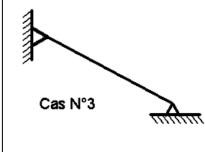
Mise en situation:

Afin de limiter les contraintes dans le tube de 200 x 80 x 4, on vous demande de choisir entre différents types d'appui en pied et en tête du limon. Votre choix devra porter sur un système isostatique.


Vous devez:


- Déterminer par calcul les degrés hyperstatiques des trois schémas en complétant les tableaux.
- Choisir le cas le plus favorable à ce type d'ouvrage.

Vous disposez de :


- DT 10 / 13
- DTC 3/5

Nombre d'éléments	Nombre d'inconnues	Calcul	Résultats

Nombre d'éléments	Nombre d'inconnues	Calcul	Résultats

Cas retenu : Cas Nº

Baccalauréat professionnel
OUVRAGES DU BATIMENT : METALLERIE

SUJET

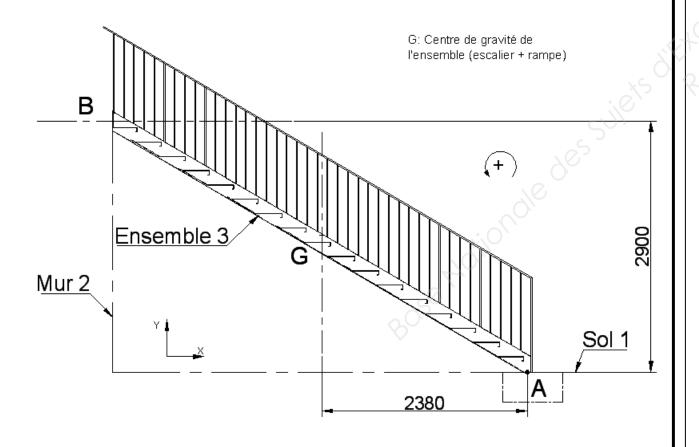
Session 2012

Sous-Épreuve E.22 – Analyse Technique d'un Ouvrage (U.22) 1206-OBM T 22 - 1

DS 4 / 9

Thème 6 : Faire le bilan des actions mécaniques sur le limon.

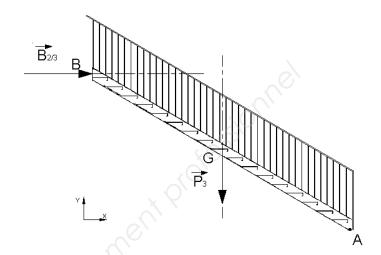
Mise en situation:


Afin de déterminer les forces en présence en pied et en tête de limon, on vous demande d'effectuer le bilan des actions mécaniques sur ce dernier.

Vous devez:

- Représenter les actions mécaniques sur l'ensemble isolé.
- Effectuer le bilan des actions mécaniques.
- Déterminer algébriquement les efforts repris en pied et en tête du limon.
- Déterminer graphiquement (document 6/8) les efforts repris en pied et en tête du limon.

Vous disposez de :


- DTC 4/5
- Schéma ci-dessous.

Zone réponse :

- L'ensemble étant isolé, représenter sur le schéma les actions mécaniques (ligne d'action + vecteur).

(Appui simple en B, articulation en A, poids total pondéré de l'ensemble = 1430 daN)

- Effectuer le bilan des actions mécaniques en complétant le tableau ci-dessous.

Actions	Point d'application	Direction	Sens	Intensité (daN)
P ₃				1430
B _{2/3}				

- En appliquant le principe fondamental de la statique, déterminer algébriquement les efforts repris au point A et au point B du système.
- Equation des forces sur X et Y :

/ X :

/ Y :

- Equation des moments sur Z / A

/Z :

Bx =


Ax =

Ay =

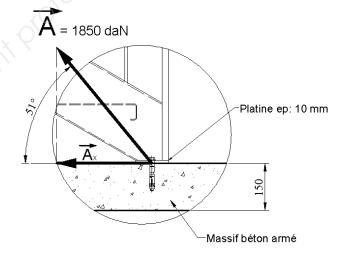
Baccalauréat professionnel
OUVRAGES DU BATIMENT : METALLERIE

SUJET Session 2012

Sous-Épreuve E.22 – Analyse Technique d'un Ouvrage (U.22) 1206-OBM T 22 - 1

Thème 7 : Sélectionner la cheville capable de résister aux efforts de cisaillement en pied de limon sur le massif en béton tout en respectant l'articulation.

Mise en situation:


On vous demande de sélectionner une cheville capable de reprendre les efforts en pied de limon.

Vous devez :

- Calculer l'effort de service en cisaillement pondéré subi par la cheville.
- Sélectionner la cheville adaptée pour reprendre ces efforts et au support béton.

Vous disposez de :

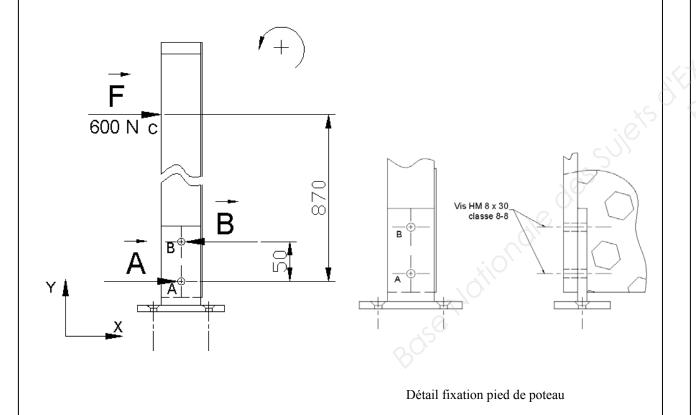
- DTC 5/5
- L'effort repris par la cheville (Schéma ci-contre)

- Calculer l'effort de cisaillement \overrightarrow{A}_x .
- Cheville sélectionnée (justifier votre réponse).

DS 7 / 9

Thème 8 : Vérifier les boulons du garde-corps des parties communes.

Mise en situation:


On vous demande de vérifier au cisaillement les boulons des montants du garde-corps des parties communes situés en haut de l'escalier.

Vous devez :

- Déterminer les forces en présence aux points A et B.
- Calculer l'effort de cisaillement subi par la vis la plus sollicitée.
- Vérifier si le boulon diamètre 8 est bien dimensionné.

Vous disposez de :

- DT 13 / 13
- DTC 3/5
- Du schéma ci-dessous
 - Force F au point C = 600 N
 - Boulons diamètre 8, classe de qualité 8-8

- En appliquant le principe fondamental de la statique, déterminer algébriquement les efforts repris au point A et au point B du système.
- Equation des forces sur X :

/ X :

- Equation des moments sur Z / A

/Z :

Bx =

Ax =

- Vérifier la vis la plus sollicitée au cisaillement.

Effort de signillement au noint A	
Effort de cisaillement au point A	
Effort de cisaillement au point B	
Vis la plus sollicitée au cisaillement Effort à prendre en compte Fv,rd	10440 N
Diamètre de la vis	
Section cisaillée de la vis An	
Classe de qualité	
αν	
Résistance ultime à la traction fub	
γm2	

Calcul résistance au cisaillement pour vis diamètre 8 :

Conclusion:

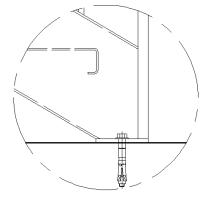
Baccalauréat professionnel
OUVRAGES DU BATIMENT : METALLERIE

SUJET Session 2012

Sous-Épreuve E.22 – Analyse Technique d'un Ouvrage (U.22) 1206-OBM T 22 - 1

8/9

Thème 9 : Dessiner le pied du limon.


Mise en situation:

Votre responsable de bureau d'études vous demande de définir techniquement le pied du limon afin que l'accès à la première marche soit facilité et que la mise en œuvre sur le chantier soit aisée.

Vous devez :

- Concevoir un pied de limon différent de celui proposé par l'architecte. (Voir ci-dessous)

Solution proposée par l'architecte

- Votre solution doit prendre en compte la pose aisée des chevilles.
- On vous impose d'utiliser les chevilles HST R M 12 en stock au magasin.
- Caractéristique technique de cette cheville :

Cheville HST – R M 12

Détails de pose

- Dessiner votre solution sur le DS 9 / 9.
- Les chevilles seront représentées par un trait d'axe.
- Coter votre dessin.

Vous disposez de :

- DT 02 / 13
- DT 10 / 13
- DT 11 / 13
- Des éléments ci-dessus

Baccalauréat professionnel OUVRAGES DU BATIMENT : METALLERIE	SUJET	Session 2012	Sous-Épreuve E.22 – Analyse Technique d'un Ouvrage (U.22) 1206-OBM T 22 - 1	DS 8
OUTRACES DO DATIMENT. METALLENIE			1200-ODIVI 22 - 1	