

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

Session: PRINTEMPS 2012

BREVET PROFESSIONNEL

Maçon

Épreuve E4 - Unité 40 MATHEMATIQUES

Durée : 1 heure <u>Coefficient</u> : 1

- Ce sujet est composé de <u>5 pages</u>.
- Les questions à traiter sont aux pages numérotées 2/5, 3/5, 4/5 et 5/5.
- Une annexe numérotée page 5/5, à rendre avec la copie.

Dans ce sujet, les deux exercices sont indépendants

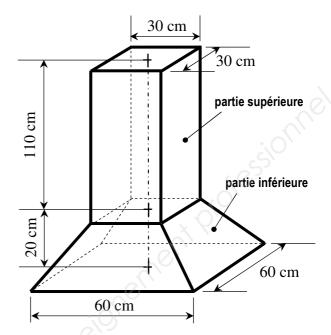
Exercice 1: (10 points)

Une entreprise fabrique des piliers en béton destinés à supporter un hangar métallique.

La figure 1 ci-contre représente un des piliers à réaliser.

- sa **partie supérieure** est un parallélépipède rectangle.
- sa **partie inférieure** est un tronc de pyramide régulier de bases carrés.

Dans cet exercice, on se propose de calculer l'aire latérale, le volume et la masse d'un pilier.

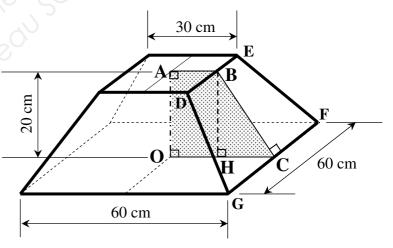


<u>Figure 1</u>: Vue en perspective d'un pilier (Sur cette figure, les proportions ne sont pas respectées)

■ <u>Première partie</u>: Calcul de l'aire latérale A_L du pilier.

- **1.1. La figure 2** représente la partie inférieure du pilier dans laquelle (**AO**) est son axe de symétrie et **OABC** est un trapèze rectangle de hauteur **AO**.
- **1.1.a.** Calculer, en cm, les longueurs représentées par [AB] et [OC].
- **1.1.b.** On donne : $\mathbf{BH} = \mathbf{AO} = 20 \text{ cm}$ $\mathbf{HC} = \frac{\mathbf{OC}}{2}$

En appliquant la propriété de Pythagore dans le triangle **BHC** rectangle en **H**, calculer, en cm, la longueur représentée par [**BC**]. Écrire le détail de calcul.

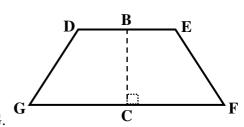


<u>Figure 2</u>: Partie inférieure du pilier (Sur cette figure, les proportions ne sont pas respectées)

1.1.c. Le trapèze isocèle **DEFG** ci-contre représente une des faces latérales de la partie inférieure du pilier.

On donne les mesures suivantes : DE = 30 cm, GF = 60 cm et BC = 25 cm.

Calculer, en cm 2 , l'aire A_1 représentée par le trapèze **DEFG**.



1.2. La figure 3 représente la partie supérieure du pilier.

Le rectangle MNQP représente une des faces latérales de cette partie.

Calculer, en cm 2 , l'aire A_2 représentée par ce rectangle.

1.3. Calculer l'aire latérale A_L du pilier (voir **figure 1**). Écrire le détail de calcul et exprimer le résultat en m².

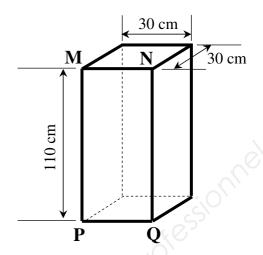


Figure 3 : Partie supérieure du pilier

Calculs du volume V et de la masse m du pilier. ■ Deuxième partie :

On donne les formules suivantes :

- Volume d'un parallélépipède rectangle : $L \times l \times h$ (L : longueur ; l : largeur ; h : hauteur)

- Volume d'un tronc de pyramide : $\frac{h}{3}(B+b+\sqrt{B.b})$ B: aire de la grande base

b : aire de la petite base

h: hauteur du tronc de pyramide

2.1. Pour la partie inférieure du pilier (tronc de pyramide), on donne : $B = 3\,600\,\mathrm{cm}^2$; $b = 900\,\mathrm{cm}^2$ et h = 20 cm.

Calculer, en cm 3 , le volume V_1 (en cm 3) de cette partie.

2.2. En utilisant les informations données sur la figure 3, calculer, en cm³, le volume V_2 de la partie supérieure du pilier.

2.3. Calculer, en cm³, le volume V_P d'un pilier.

2.4. Calculer le volume $V_{\rm B}$ de béton nécessaire pour réaliser 16 piliers. Exprimer le résultat en m³ (mètre-cube).

2.5. On considère que la masse volumique ρ du béton utilisé est de 2 500 kg/m³ et le volume V_P d'un pilier est 0,141 m³.

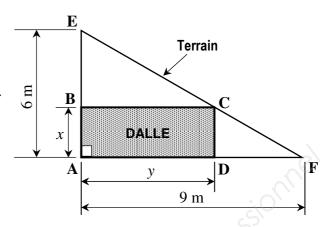
Calculer, en kg, la masse m d'un pilier.

On donne la relation: $\rho = \frac{m}{V}$ (avec: ρ en kg/m³; m en kg et V en m³)

Exercice 2: (10 points)

Sur son terrain de la forme triangulaire, un propriétaire souhaite réaliser une dalle rectangulaire en béton sur laquelle il construira une véranda (voir figure ci-contre).

Le but de l'exercice est de déterminer les dimensions (largeur x et longueur y) de la dalle pour lesquelles l'aire de la dalle sera maximale.



1. On donne : EA = 6 m ; BA = CD = x ; EB = 6 - x ; AF = 9 m et BC = AD = y.

En appliquant la propriété de Thalès dans le triangle EAF, on a l'égalité suivante :

$$\frac{\mathbf{EB}}{\mathbf{EA}} = \frac{\mathbf{BC}}{\mathbf{AF}}$$
 soit: $\frac{6-x}{6} = \frac{y}{9}$

Montrer que l'on peut transformer cette égalité sous la forme : y = -1.5x + 9. Écrire le détail de calcul.

2. Dans ce cas, on peut exprimer l'aire A de la dalle en fonction de la largeur x par la relation : $A(x) = -1.5x^2 + 9x$

Afin d'étudier l'évolution de l'aire A(x) on considère la fonction f de la variable x définie sur l'intervalle [0;6] par : $f(x) = -1.5x^2 + 9x$

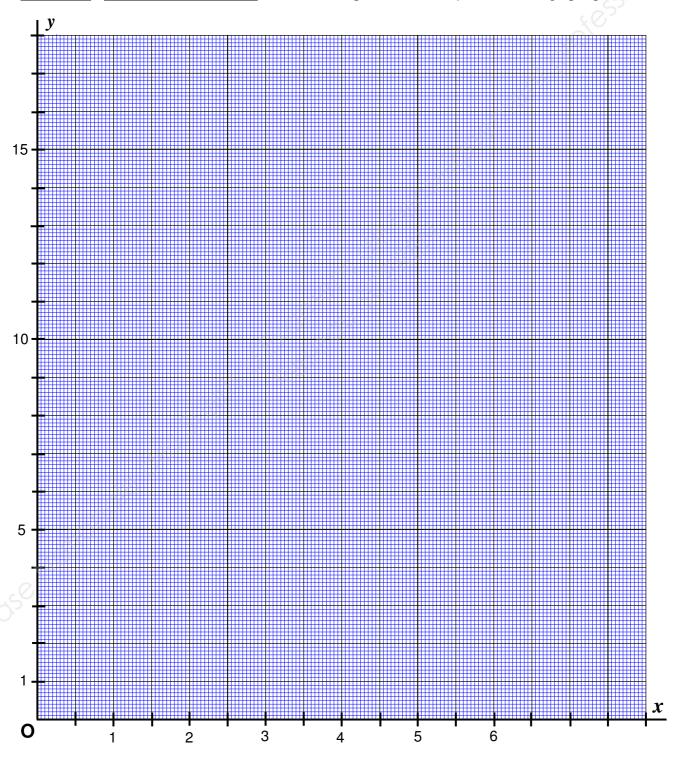
- **2.1.** Sur l'annexe page 5/5 (à rendre avec la copie), compléter le tableau de valeurs de f.
- **2.2.** On appelle (C) la courbe représentative de f sur l'intervalle [0; 6] Dans le repère de **l'annexe**, tracer la courbe (C) en utilisant les valeurs du tableau précédent.
- **2.3.** En laissant apparents les traits de lecture, déterminer graphiquement :
 - **2.3.a.** les valeurs de x pour lesquelles f(x) = 10.
 - **2.3.b.** la valeur de x pour laquelle f(x) est maximale.
- 3. En utilisant les résultats obtenus en (1) et (2), indiquer :
 - **3.1.** la largeur x pour laquelle l'aire de la dalle est maximale.
 - **3.2.** la longueur y pour laquelle l'aire de la dalle est maximale.
 - **3.3.** l'aire maximale $A_{\rm max}$ de la dalle.

ANNEXE (à rendre avec la copie)

• Exercice 2 - Question (2.1): Tableau de valeurs de f (Rappel: $f(x) = -1.5x^2 + 9x$)

Valeurs de x	0	1	2	3	4	5	6
Valeurs de $f(x)$	0	7,5			12		0

• Exercice 2 - Questions (2.2) et (2.3) : Courbe représentative de f et lectures graphiques.



page 5/5