

Ce document a été numérisé par le <u>CRDP de Montpellier</u> pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

BEP Électrotechnique Énergie Équipements Communicants Epreuve EP2 Session 2013

INSTALLATION D'UNE CHAUFFERIE

PED Électrotechnique Éner	rgie Équipements Communicants	DC	SSIER SUJET DS
BEF Electrotechnique Ener	gie Equipements Communicants	Se	ssion 2013
EP2 – Réalisation et r	mise en service de tout ou partie d'un ouvrage e	électrique	
Durée de l'épreuve : 8h heures	Coef: 8		DS 1 / 12

INSTALLATION D'UNE CHAUFFERIE

N° du candidat :	
N° du poste :	

Description de l'épreuve

• Durée :

8 heures Temps préconisé :

Réalisation : 6 heures

Mise en service: 1 heure 45 minutes

Compte rendu: 15 minutes

• Composition du dossier :

Le Dossier Technique est composé de 8 feuilles repérées de DT1 à DT8. Le Dossier Sujet est composé de 12 feuilles repérées de DS1 à DS12.

• Barème de notation :

Réalisation : sur 40 points
Tests de mise en service et Compte rendu: sur 30 points
Essais fonctionnels : sur 30 points

FICHE D'EVALUATION DE L'EPREUVE EP 2

ACADEMIE DE MONTPELLIER

<u>Epreuves</u>	Proposition de note
Réalisation	/ 40
Tests de mise en service et Compte rendu	/ 30
Essais fonctionnels	/30
Total	/ 100
<u>NOTE</u>	<u>/ 20</u>

	Examinateu	Irs (Nom et Signature)	
2	P			
40,				

Réalisation

Il vous est demandé de réaliser le câblage de l'installation d'une chaufferie conformément aux schémas électriques fournis (DT).

- 1. Identifier l'ensemble de l'appareillage nécessaire (DT) et Procéder au repérage de l'appareillage à l'aide d'étiquettes autocollantes.
- 2. **Réaliser** le câblage de l'installation d'une chaufferie.
- 3. Procéder à la mise en service de l'équipement. Compléter les fiches de tests de mise en service ci-après et procéder AVEC L'EXAMINATEUR aux différents tests nécessaires. Une attention particulière sera portée à la sécurité et à l'habilitation électrique.

Les circuits de l'éclairage et de la prise de courant seront alimentés en 230V monophasé 50Hz à partir d'une alimentation générale en 400 V triphasé avec neutre et PE. Le circuit d'éclairage sera réalisé en conducteur rigide de 1,5 mm² type HO7V-U. Le circuit de la prise de courant sera réalisé en conducteur rigide de 2,5 mm² type HO7V-U.

Le coffret ou la platine de commande des pompes et de la vanne motorisée sera alimenté en 400V triphasé: le câblage du coffret ou de la platine sera réalisé en câble souple H07RN-F 4 G1,5 mm².

Le circuit de puissance est alimenté en 3 X 400V : il sera réalisé en conducteur souple noir de 1,5 mm² type HO5V-K.

Le circuit de commande est alimenté en 24V 50Hz et sera réalisé en conducteur souple rouge de 0,75 mm² de section (type HO5V-K).

Les communs des bobines pourront être câblés en fil souple blanc de 0,75 mm² (type HO5V-K).

Toutes les bornes des conducteurs de protection électrique seront raccordées à la barrette de masse par un conducteur souple de couleur vert / jaune de 1.5 mm² type HO5V-K.

Tests. Mise en service.

Tests de mise en service.

Essais hors tension de l'installation électrique (platine déconnectée ou sectionneur Q3 ouvert)

Contrôler la liaison équipotentielle du PE :

Bornes de contrôle	Appareil de	Valeurs	Valeurs	Liaison PE	correcte	
(à compléter)	mesure et calibre	attendues	mesurées	OUI	NON	
PE câble alim –	Ohmmètre	0Ω				
PE coffret alim	Ommono	032		x V		
PE câble alim -	Ohmmètre	0Ω				
PE de la PC1	Onninelle	052		~O`		
PE câble alim -	Ohmmètre	0Ω		-4,		
PE éclairage	Onninette	052		⊘`		
PE câble alim – PE platine	Ohmmètre	0Ω				

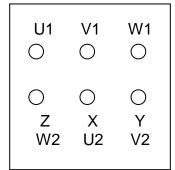
Tests de mise en service.

Contrôler l'isolement électrique (QG, Q1, Q2 et Q3 ouverts)

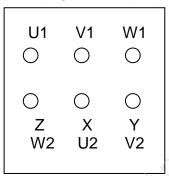
Bornes de Controle (à compléter) mesure et calibre Valeurs attendues Circuits Puissance : DUI NON Entre 1 et 3 amont QG Mégohmmètre ≥ 0,5 MΩ Entre 1 et 7 amont QG Mégohmmètre ≥ 0,5 MΩ Entre 3 et 5 amont QG Mégohmmètre ≥ 0,5 MΩ Entre 5 et 7 amont QG Mégohmmètre ≥ 0,5 MΩ Entre 3 et 7 amont QG Mégohmmètre ≥ 0,5 MΩ Entre 3 et PE amont QG Mégohmmètre ≥ 0,5 MΩ Entre 5 et PE amont QG Mégohmmètre ≥ 0,5 MΩ Entre 7 et PE amont QG Mégohmmètre ≥ 0,5 MΩ Entre 2 et 4 aval QG Mégohmmètre ≥ 0,5 MΩ Entre 2 et 6 aval QG Mégohmmètre ≥ 0,5 MΩ Entre 2 et 8 aval QG Mégohmmètre ≥ 0,5 MΩ Entre 4 et 6 aval QG Mégohmmètre ≥ 0,5 MΩ Entre 4 et 8 aval QG Mégohmmètre ≥ 0,5 MΩ Entre 4 et 8 aval QG Mégohmmètre ≥ 0,5 MΩ Entre 6 et PE aval QG Mégohmmètre ≥ 0,5 MΩ Entre 6 et PE aval QG Mégohmmètre ≥ 0,5 MΩ Entre 6 et PE aval QG Mégohmmètre
Entre 1 et 3 amont QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 1 et 5 amont QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 1 et 7 amont QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 3 et 5 amont QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 3 et 7 amont QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 3 et PE amont QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 5 et PE amont QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 7 et PE amont QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 2 et 4 aval QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 2 et 6 aval QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 2 et 8 aval QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 4 et 6 aval QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 6 et 8 aval QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 4 et 8 aval QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 4 et PE aval QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$ Entre 6 et PE aval QG Mégohmmètre $\geq 0,5 \text{ M}\Omega$
$\begin{array}{llllllllllllllllllllllllllllllllllll$
Entre 2 et 4 aval QG
Entre 4 et PE aval QG Mégohmmètre $\geq 0.5 \text{ M}\Omega$ Entre 6 et PE aval QG Mégohmmètre $\geq 0.5 \text{ M}\Omega$
Entre 6 et PE aval QG Mégohmmètre $\geq 0.5 \text{ M}\Omega$
Little 6 et FL avai QG Megoriffillette 2 0,3 Mis2
Fater O at A and O4
Entre 2 et 4 aval Q1 Mégohmmètre $\geq 0.5 \text{ M}\Omega$
Entre 2 et PE Aval Q1 Mégohmmètre $\geq 0.5 \text{ M}\Omega$
Entre 2 et 4 evel 00* Mérobamètre > 0 F MO
Entre 2 et 4 aval Q2* Mégohmmètre $\geq 0.5 \text{ M}\Omega$
Entre 2 et PE Aval Q2 Mégohmmètre $\geq 0.5 \ \text{M}\Omega$

Essais hors tension de la platine

Contrôler la liaison équipotentielle du PE :


						/2
Bornes de contrôle	Appareil de	Valeurs	Valeurs	Liaison PE	correcte	
(à compléter)	mesure et calibre	attendues	mesurées	OUI	NON	
PE câble alim – PE moteur P1	Ohmmètre	0Ω				
PE câble alim – PE moteur P2	Ohmmètre	Ω0				O,
PE câble alim – PE vanne motorisée	Ohmmètre	0Ω			30	
PE câble alim – PE transformateur	Ohmmètre	0Ω			50	
PE câble alim – PE platine	Ohmmètre	0Ω		* 6		

Contrôler l'isolement électrique (Q3, Q4 et Q5 ouverts)


Bornes de contrôle	Appareil de mesure et	Valeurs	Valeurs	Absence c		
(à compléter)	calibre	attendues	mesurées	OUI	NON	
Puissance :						
Entre 1 et 3 amont Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 1 et 5 amont Q3	Mégohmmètre	\geq 0,5 M Ω	\sim			
Entre 3 et 5 amont Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 1 et PE amont Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 3 et PE amont Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 5 et PE amont Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 2 et 4 aval Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 2 et 6 aval Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 4 et 6 aval Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 2 et PE aval Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 4 et PE aval Q3	Mégohmmètre	\geq 0,5 M Ω				
Entre 6 et PE aval Q3	Mégohmmètre	\geq 0,5 M Ω				
. 05						
Entre X5 et X6	Mégohmmètre	\geq 0,5 M Ω				
Entre X5 et X7	Mégohmmètre	\geq 0,5 M Ω				
Entre X6 et X7	Mégohmmètre	\geq 0,5 M Ω				
Entre X5 et X8	Mégohmmètre	\geq 0,5 M Ω				
Entre X6 et X8	Mégohmmètre	\geq 0,5 M Ω				
Entre X7 et X8	Mégohmmètre	\geq 0,5 M Ω				
H ₂						
Entre X9 et X10	Mégohmmètre	\geq 0,5 M Ω				
Entre X9 et X11	Mégohmmètre	\geq 0,5 M Ω				
Entre X10 et X11	Mégohmmètre	\geq 0,5 M Ω				
Entre X9 et x12	Mégohmmètre	\geq 0,5 M Ω				
Entre X10 et X12	Mégohmmètre	\geq 0,5 M Ω				
Entre X11 et X12	Mégohmmètre	\geq 0,5 M Ω				
Entre Q4 2 et Q5 1	Mégohmmètre	\geq 0,5 M Ω				

BEP Électrotechnique Énergie Équipements Communicants EP2 – Réalisation et mise en service Session 2013 DS 7 / 12

Couplage moteur pompe P1

Couplage moteur pompe P2

A partir du dossier technique, déterminer le courant des moteurs P1 et P2 et précisez le réglages des relais thermiques F1 et F2

	Moteur pompe P1	Moteur pompe P2
Courant dans les moteurs P1 et P2		
Courant de réglage des relais thermiques F1 et F2	800	
/	Wey SCA,	

Tests de mise en service

Essais sous tension de l'installation électrique :

Vérification des tensions :

L'examinateur veillera particulièrement à l'application des règles de sécurité liées à la mesure de tensions, à l'habilitation et à l'utilisation des E.P.I

14

	Appareil de			Tension	correcte
Bornes de contrôle	mesure, calibre et type de courant	Valeurs attendues	Valeurs mesurées	OUI	NON
Puissance :				<	O,
Entre 1 et 3 de QG	Voltmètre	230V~		x 'Q'	
Entre 1 et 5 de QG	Voltmètre	230V~			
Entre 1 et 7 de QG	Voltmètre	230V~			
Entre 3 et 5 de QG	Voltmètre	400 V~	40		
Entre 3 et 7 de QG	Voltmètre	400 V~			
Entre 5 et 7 de QG	Voltmètre	400 V~	()		
Fermer QG		9			
Entre Q1 1 et Q1 3	Voltmètre	230V~			
Fermer Q1		N 5			
Test entre N et Ph de la prise PC1	Voltmètre	230V~			
Entre Q 2 1 et Q2 3	Voltmètre	230V~			
Fermer Q2	. 0.15				
Test du simple allumage	SUL	Eclairage lampe			

Essais sous tension de la platine :

Vérification des tensions :

L'examinateur veillera particulièrement à l'application des règles de sécurité liées à la mesure de tensions, à l'habilitation et à l'utilisation des E.P.I

	Annoroll do			Tanaian	/4		
Bornes de contrôle	Appareil de	Valeurs attendues		Tension correcte			
	mesure, calibre et type			OUI	NON		
	de courant						
Puissance:					,0		
Entre 1 et 3 de Q3	Voltmètre	400 V~			. 25		
Entre 1 et 5 de Q3	Voltmètre	400 V~		.(
Entre 3 et 5 de Q3	Voltmètre	400 V~		. 0			
Fermer Q3 avec les 3 fusibles	Voltmètre	400 V~		all'e			
			76.				
Entre 1 et 3 de KM1	Voltmètre	400 V~					
Entre 1 et 5 de KM1	Voltmètre	400 V~					
Entre 3 et 5 de KM1	Voltmètre	400 V~	3/01				
Action manuelle sur KM1		Marche de P1	CRE				
Entre 1 et 3 de KM2	Voltmètre	400 V~					
Entre 1 et 5 de KM2	Voltmètre	400 V~					
Entre 3 et 5 de KM2	Voltmètre	400 V~					
Action manuelle sur KM2	*5 P	Marche de P2					
Entre 1 et 3 de Q4	Voltmètre	400 V~					
Fermer Q4	2,						
Entre 1 et 2 de T1	Voltmètre	400 V~					
Entre 1 et 3 de Q5	Voltmètre	24 V~					
Fermer Q5		Voyant H2 éclairé					

BEP Électrotechnique Énergie Équipements Communicants	EP2 – Réalisation et mise en service	Session 2013	DS 10 / 12	
---	--------------------------------------	--------------	------------	--

Fonctionnement de la platine

Installation sous tension (voyant H2 éclairé) et vanne fermée (fin de course FF ouvert)

/2 commande P1 commande P2 Ouverture vanne Fermeture vanne Klaxon H1 Relais KA1 KM2 0 Aucune action 0 0 0 0 Fermeture IH1 (6h) Action sur fin de course FO (vanne ouverte) 1 Ouverture IH1 (19h) 1 Action sur fin de course FF (vanne fermée) Fermeture IH1 (6h) 1 1 Déclenchement du RT F1 1 1 1 1 Déclenchement du RT F2 1 1 1 Réarmement du RT F1 1 1 1 Réarmement du RT F2 1 1 1 Action sur fin de course FF (vanne fermée) 1 Ouverture IH1(19h) Action sur fin de course FF(vanne fermée) Action sur la marche forcée S1 1 1 Action sur fin de course FO (vanne ouverte) 1 Arrêt de la marche forcée (S1 ouvert) 1 Action sur fin de course FF (vanne fermée) Température < à 5°C(fermeture de B1) 1 1 Action sur fin de course FO (vanne ouverte) 1 Température > à 5°C (ouverture de B1) 1 Action sur fin de course FF (vanne fermée)

BEP Électrotechnique Énergie Équipements Communicants	EP2 – Réalisation et mise en service	Session 2013	DS 11 / 12	
---	---	--------------	------------	--

	Câbles et conducteurs correctement dénudés	S/5
	Conducteurs correctement rangés.	/5
	2 conducteurs maxi par borne.	/5
	Connections correctes, serrage.	/5
	Repérage correct.	/5
	Respect des sections et couleurs	/5
	Raccordement des PE	/5
	Esthétique d'ensemble.	/5
		©\
3003	S TOTAL REALISATION	
5005	Essais fonction	onnels
5005	<u> </u>	onnels
5005	Essais fonction	
	Essais fonction Fonctionnement installation	onnels
☐ FON	Essais fonction Fonctionnement installation (PC + SA + Alim coffret)	onnels
☐ FON	Essais fonction Fonctionnement installation (PC + SA + Alim coffret) NCTIONNEMENT BON	onnels
☐ FON	Fonctionnement installation (PC + SA + Alim coffret) NCTIONNEMENT BON NCTIONNEMENT PARTIEL	onnels
☐ FON☐ PAS	Fonctionnement installation (PC + SA + Alim coffret) NCTIONNEMENT BON NCTIONNEMENT PARTIEL	Commentaires :
☐ FON☐ PAS	Fonctionnement installation (PC + SA + Alim coffret) NCTIONNEMENT BON NCTIONNEMENT PARTIEL S DE FONCTIONNEMENT	Commentaires :
☐ FON☐ PAS	Fonctionnement installation (PC + SA + Alim coffret) NCTIONNEMENT BON NCTIONNEMENT PARTIEL S DE FONCTIONNEMENT Fonctionnement platine ou coffret puissance /10 et commande /10)	Commentaires :
FON PAS	Fonctionnement installation (PC + SA + Alim coffret) NCTIONNEMENT BON NCTIONNEMENT PARTIEL S DE FONCTIONNEMENT Fonctionnement platine ou coffret puissance /10 et commande /10) NCTIONNEMENT BON	Commentaires :
FON PAS	Fonctionnement installation (PC + SA + Alim coffret) NCTIONNEMENT BON NCTIONNEMENT PARTIEL S DE FONCTIONNEMENT Fonctionnement platine ou coffret puissance /10 et commande /10) NCTIONNEMENT BON NCTIONNEMENT BON NCTIONNEMENT PARTIEL	Commentaires :
FON PAS	Fonctionnement installation (PC + SA + Alim coffret) NCTIONNEMENT BON NCTIONNEMENT PARTIEL S DE FONCTIONNEMENT Fonctionnement platine ou coffret puissance /10 et commande /10) NCTIONNEMENT BON NCTIONNEMENT BON NCTIONNEMENT PARTIEL	Commentaires :

BEP Électrotechnique Énergie Équipements Communicants	EP2 – Réalisation et mise en service	Session 2013	DS 12 / 12	
---	--------------------------------------	--------------	------------	--