

LE RÉSEAU DE CRÉATION ET D'ACCOMPAGNEMENT PÉDAGOGIQUES

Ce document a été numérisé par le Canopé de l'académie de Bordeaux ur la Base nationale des sujets d'Examens de l'enseignement professions erisé pai les sujets d'E pour la Base nationale des sujets d'Examens de l'enseignement professionnel.

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

FORMULAIRE DE MATHÉMATIQUES

ent professionnel B.T.S. DU GROUPEMENT C

AGROÉQUIPEMENT

CHARPENTE-COUVERTURE

COMMUNICATION ET INDUSTRIES GRAPHIQUES (2 Options)

CONCEPTION ET RÉALISATION EN CHAUDRONNERIE INDUSTRIELLE

DÉVELOPPEMENT ET RÉALISATION BOIS

ÉTUDE ET RÉALISATION D'OUTILLAGES DE MISE EN FORME DES MATÉRIAUX

INDUSTRIES CÉRAMIQUES

INDUSTRIES PAPETIÈRES (2 Options)

MÉTIERS DE LA MODE – VÊTEMENT (2 Options)

MISE EN FORME DES MATÉRIAUX PAR FORGEAGE

PRODUCTIQUE TEXTILE (4 Options)

SYSTÈMES CONSTRUCTIFS BOIS ET HABITAT

Plusieurs résultats figurant dans ce formulaire ne sont pas au programme de TOUTES les spécialités de BTS appartenant à ce groupement.

1. <u>RELATIONS FONCTIONNELLES</u>

$$\ln(ab) = \ln a + \ln b, \text{ où } a > 0 \text{ et } b > 0$$

$$\exp(a+b) = \exp a \times \exp b$$

$$a^t = e^{t \ln a}$$
, où $a > 0$

$$t^{\alpha} = e^{\alpha \ln t}$$
, où $t > 0$

$$\cos(a+b) = \cos a \cos b - \sin a \sin b$$

$$\sin(a+b) = \sin a \cos b + \cos a \sin b$$

$$\cos(2t) = 2\cos^2 t - 1 = 1 - 2\sin^2 t$$

$$\sin(2t) = 2\sin t \cos t$$

$$\sin p + \sin q = 2\sin \frac{p+q}{2}\cos \frac{p-q}{2}$$

$$\sin p - \sin q = 2\sin \frac{p - q}{2}\cos \frac{p + q}{2}$$

$$\cos p + \cos q = 2\cos\frac{p+q}{2}\cos\frac{p-q}{2}$$

$$\cos p - \cos q = -2\sin\frac{p+q}{2}\sin\frac{p-q}{2}$$

$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

$$\cos a \cos b = \frac{1}{2} \left[\cos (a+b) + \cos (a-b) \right]$$

$$\sin a \sin b = \frac{1}{2} \left[\cos (a-b) - \cos (a+b) \right]$$

$$\sin a \cos b = \frac{1}{2} \left[\sin (a+b) + \sin (a-b) \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left[e^{it} + e^{-it} \right]$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{it} = \cos t + i \sin t$$

$$\cos t = \frac{1}{2} \left(e^{it} + e^{-it} \right)$$

$$\sin t = \frac{1}{2i} \left(e^{it} - e^{-it} \right)$$

$$e^{at} = e^{\alpha t} \left(\cos (\beta t) + i \sin (\beta t) \right), \text{ où } a = \alpha + i\beta$$

$$\lim_{t \to +\infty} \ln t = +\infty$$

$$\lim_{t\to\infty} e^t = +\infty ;$$

$$\lim_{t\to\infty} e^t = 0$$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} t^{\alpha} = +\infty$; si $\alpha < 0$, $\lim_{t \to +\infty} t^{\alpha} = 0$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{e^t}{t^{\alpha}} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to +\infty} \frac{\ln t}{t^{\alpha}} = 0$

Comportement à l'origine

$$\lim_{t\to 0} \ln t = -\infty$$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} = 0$;

si
$$\alpha < 0$$
, $\lim_{t \to 0} t^{\alpha} = +\infty$

Si
$$\alpha > 0$$
, $\lim_{t \to 0} t^{\alpha} \ln t = 0$.

b) Dérivées et primitives

Fonctions usuelles

	f(t)	f'(t)	f(t)	f'(t)
	In t	$\frac{1}{t}$	Arc sin t	$\frac{1}{\sqrt{1-t^2}}$
t C	e^t $\alpha \in \mathbb{R}$	e^t $\alpha t^{\alpha-1}$	Arc tan t	$\frac{1}{1+t^2}$
	$\sin t$	cos t	$e^{al} \ (a \in \mathbb{C})$	ae ^{at}
	cos t tan t	$-\sin t$ $\frac{1}{\cos^2 t} = 1 + \tan^2 t$		(0)

<u>Opérations</u>

$$(u+v)' = u'+v'$$

$$(ku)' = ku'$$

$$(uv)' = u'v+uv'$$

$$\left(\frac{1}{u}\right)' = -\frac{u'}{u^2}$$

$$\left(\frac{u}{v}\right)' = \frac{u'v-uv'}{v^2}$$

$$(v \circ u)' = (v' \circ u)u'$$

$$(e^u)' = e^u u$$

$$(u^{\alpha}) = \alpha u^{\alpha-1} u'$$

c) Calcul intégral

Valeur moyenne de f sur [a, b]:

$$\frac{1}{b-a}\int_a^b f(t)\,\mathrm{d}t$$

$$\int_{a}^{b} u(t) v'(t) dt = [u(t)v(t)]_{a}^{b} - \int_{a}^{b} u'(t) v(t) dt$$

d) Développements limités

$$e^{t} = 1 + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + \frac{t^{n}}{n!} + t^{n} \varepsilon(t)$$

$$= t + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + (-1)^{n} t^{n} + t^{n} \varepsilon(t)$$

$$= t + \frac{t}{1!} + \frac{t^{2}}{2!} + \dots + (-1)^{n} t^{n} + t^{n} \varepsilon(t)$$

$$= t + \frac{t}{1!} + \frac{t^{2}}{3!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p)!} + t^{2p} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$= t + \frac{t^{2}}{2!} + \frac{t^{4}}{4!} + \dots + (-1)^{n} \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon(t)$$

$$\sin t = \frac{t}{1!} - \frac{t^3}{3!} + \frac{t^5}{5!} + \dots + (-1)^p \frac{t^{2p+1}}{(2p+1)!} + t^{2p+1} \varepsilon (t)$$

$$\cos t = 1 - \frac{t^2}{2!} + \frac{t^4}{4!} + \dots + (-1)^p \frac{t^{2p}}{(2p)!} + t^{2p} \varepsilon (t)$$

Equations différentielles

• ()	
Équations	Solutions sur un intervalle I
a(t) x' + b(t) x = 0	$f(t) = ke^{-G(t)}$ où G est une primitive de $t \mapsto \frac{b(t)}{a(t)}$
ax'' + bx' + cx = 0	Si $\Delta > 0$, $f(t) = \lambda e^{r_1 t} + \mu e^{r_2 t}$ où r_1 et r_2 sont les racines de l'équation caractéristique
équation caractéristique :	Si $\Delta = 0$, $f(t) = (\lambda t + \mu)e^{rt}$ où r est la racine double de l'équation caractéristique
$ar^2 + br + c = 0$	Si $\Delta < 0$, $f(t) = [\lambda \cos(\beta t) + \mu \sin(\beta t)]e^{\alpha t}$ où $r_1 = \alpha + i\beta$ et $r_2 = \alpha - i\beta$ sont les racines
de discriminant ⊿	complexes conjuguées de l'équation caractéristique.

3. PROBABILITES

$$P(X=k) = C_n^k p^k q^{n-k}$$

où
$$C_n^k = \frac{n!}{k!(n-k)!}$$
; $E(X) = np$;

$$\sigma(X) = \sqrt{npq}$$

b) Loi de Poisson

$$P(X=k) = \frac{e^{-\lambda} \lambda^k}{k!}$$

$$E(X) = \lambda$$

$$V(X) = \lambda$$

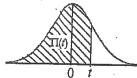
k	0,2	0,3	0;4	0,5	0,6
0	0,8187	0,7408	0,6703	0,6065	0,5488
1	0,1637	0,2222	0,2681	0,3033	0,3293
2	0,0164	0,0333	0,0536	0,0758	0,0988
3	0,0011	0,0033	0,0072	0,0126	0,0198
4	0,0000	0,0003	0,0007	0,0016	0,0030
5		0,0000	0,0001	0,0002	0,0004
6			0,0000	0,0000	0,0000

k 2	. 1	1.5	2	3	4	5	6	3	8	9	10
0	0.368	0.223	0.135	0.050	0.018	0.007	0.002	0.001	0.000	0.000	0.000
1	0.368	0.335	0.271	0.149	0.073	0.034	0.015	0.006	0.003	0.001	0.000
2	0.184	0.251	0.271	0.224	0.147	0.084	0.045	0.022	0.011	0.005	0.002
3	0.061	0.126	0.180	0.224	0.195	0.140	0.089	0.052	0.029	0.015	0.008
. 4	0.015	0.047	0.090	0.168	0.195	0.176	0.134	0.091	0.057	0.034	0.019
5	0.003	0.014	0.036	0.101	0.156	0.176	0.161	0.128	0.092	0.061	0.038
6	0.001	0.004	0.012	0.050	0.104	0.146	- 0.161	0.149	0.122	0.091	0.063
7	0.000	0.001	0.003	0.022	0.060	0.104	0.138	0.149	0.140	0.117	0.090
8		0.000	0.001	0.008	0.030	0.065	0.103	0,130	0.140	0.132	0.113
9			0.000	0.003	0.013	0.036	0.069	0.101	0.124	0,132	0.125
10			9	0.001	0.005	0.018	0.041	0.071	0.099	0.119	0.125
11		SU	XS	0,000	0.002	0.008	0.023	0.045	0.072	0.097	0.114
12		11.			0.001	0.003	0.011	0.026	0.048	0.073	0.095
13		5			0.000	. 0.001	0.005	0.014	0.030	0.050	0.073
14	20	7				0.000	0.002	0.007	0.017	0.032	0.052
15	0						0.001	0.003	0.009	0.019	0.035
16	10						0.000	0.901	0.005	0.011	0.022
17	Γ .		1					0.001	0.002	0.006	0.013
× 18				ļ				0,000	0.001	0.003	0.007
19					,				0.000	0.001	0.004
20	-		1				,			0.001	0.002
21			į							0,000	0.001
22											0.000

c) Loi exponentielle

Fonction de fiabilité :
$$R(t) = e^{-\lambda t}$$

$$E(X) = \frac{1}{\lambda}$$
 (M.T.B.F.)


$$\sigma(X) = \frac{1}{2}$$

d) Loi normale

La loi normale centrée réduite est caractérisée par la densité de probabilité : $f(x) = \frac{1}{\sqrt{2\pi}} e^{-\frac{x^2}{2}}$

EXTRAITS DE LA TABLE DE LA FONCTION INTEGRALE DE LA LOI NORMALE CENTREE, REDUITE $\mathcal{N}(0,1)$

$$\Pi(t) = P(T \le t) = \int_{-\infty}^{t} f(x) dx$$

	_							0 t				ے
	1	0,00			0,03	0,04	0,05	0,06	0,07	0.08	0,09	7
	0,0	0,500	0 0,504	0 0,508	0,512	0 0,516	0 0,519					-
	0,1	0,539	8 0,543	8 0,547 8	0,551	7 0,555	7 0,559	6 0,563		1		
	0,2	0,579	3 0,583	2 0,587 1	0,591	0,594	8 0,598	7 0,602 6	1			
	0,3	0,617	9 0,621	7 0,625 5	0,6293	0,633	0,636	8 0,640 6				
- [0,4	0,655	0,659	0,662 8	0,6664	0,670 (0,673	6 0,677 2		(Y_1)	1 3,542	
	0,5	0,691	0,695 (0,698 5	0,7019	0,705 4	0,708	8 0,7123				- 1
1	0,6	0,725 7	7 0,729 (0,732 4	0,735 7	0,738 9	0,742	0,745 4	レイノ	1 "	7,50	- 1
ł	0,7	0,758 0	0,761 1	0,764 2	0,7673	0,770 4	0,773 4	1 . (1	,,,,,,,		- 1
1	0,8	0,788 1	0,791 0	0,793 9	0,7967	0,799 5	0,802 3	0,805 1	0,807 8	177.	1 .,	
	0,9	0,815 9	0,818 6	0,821 2	0,823 8	0,825 4	0,828 9	h3 "	0,834 0	-,		- 1
1					1		16	31	1 3,00 4 0	0,0303	0,030 9	
	1,0	0,841 3	0,843 8	0,846 1	0,848 5	0,850 8	0,853 1	0,855 4	0.8577	0,859 9	0,862 1	
1	1,1	0,864 3	0,866 5	0,868 6	0,870 8	0,872 9	0,874 9	N()	0,879 0	0,881 0	0.883 0	- (
	1,2	0,884 9	0,886 9	0,888 8	0,890 7	0,892 5	0,894 4	.,	0.898 0	0,899 7	0,901 5	
	1,3	0,903 2	0,904 9	0,906 6	0,908 2	0,909 9	0,911 5	0,913 1	0,9147	0,916 2		
]]	1,4	0,919 2	0,920 7	0,922 2	0,923 6	0,925 1	0,926 5	0,927 9	0,929 2	0,930 6	0,9177	
1	,5	0,933 2	0,934 5	0,935 7	0,937 0	0,938-2	0,939 4	0,940 6	0,941 8	0,942 9	0,931 9	
1	,6	0,945 2	0,9463	0,947 4	0,948 4	0,949 5	0,950 5	0,951 5	0,952 5	0,953 5	0,944 1	1.
1	,7	0,955 4	0,956 4	0,9573	0,958-2	0,959 1	0.959 9	0,960 8	0,952 5	0,962 5	0,954 5	
1,	,8	0,964 1	0,964 9	0,965 6	0,966 4	0,9671	0,9678	0,968 6	0,969 3	0,962 5	0,963 3	
1,	,9	0,971 3	0,971 9	0,972 6	0,973 2	0,973 8	0,974 4	0,975 0	0,975 6		0,970 6	
				5		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		0,5750	0,5750	0,9761	0,9767	
2,	0	0,977 2	0,977 9	0,9783	0,978 8	0,979 3	0,979 8	0,980 3	0,980 8	0,981 2		
2,	1	0,982 1	0,982 6	0,983 0	0,983 4	0,983 8	0,984 2	0,984 6	0,985 0		0,981 7	
2,	2	0,9861	0,986 4	0,9868	0,9871	0,987 5	0,987 8	0,988 1	0,988 4	0,985 4	0,985 7	1
2,3	3	0,989 3	0,989 6	0,989 8	0.9901	0,990 4	0,990 6	0,990.9		0,988 7	0,989 0	
2,4	LD	0,9918	0,992 0	0,992.2	0,992 5	0,992 7	0,992 9	0,993 1	0,991 1	0,991 3	0,991 6	
2,5	. 0	0,993 8	0,994 0	0,994 1	0,9943	0,994 5	0,994 6	0,993 1	0,993 2	0,993 4	0,993 6	
2,6	1 0	0,9953	0,995 5	0,995 6	0,995 7	0,995 9	0,996 0	'	0,994 9	0,9951	0,995 2	
2,7	0	,9965	0,9966	0,9967	0,9968	0,9969	0,997 0	0,996 1	0,996 2	0,9963	0,9964	
2,8	0	,9974	0,9975	0,997 6	0,9977	0,997 7	0,9978	0,997 1	0,9972	0,9973	0,9974	!
2,9	- 1	,9981	0,998 2	0,998 2	0,9983	0,998 4	' 1	0,997 9	0,997 9	0,998 0	0,9981	
			1	-,	0,2203	U,770 4	0,998 4	0,998 5	0,998 5	0,998 6	0,9986	

TABLE POUR LES GRANDES VALEURS DE 1

1	3,0	3,1	3,2	3.3	3.4	2.5	7.6			
$\Pi(t)$	0,998 65	0,999 04	0.000.31	0.000.70	0.000.45	2,0	3,0	3,8	4,0	4,5
		0,555 04	0,777 31	0,999 52	0,999 66	0,999 76	0,999 841	0.999 928	0.999 968	0 000 007

Nota: $\Pi(-t) = 1 - \Pi(t)$