

LE RÉSEAU DE CRÉATION ET D'ACCOMPAGNEMENT PÉDAGOGIQUES

Ce document a été mis en ligne par le Réseau Canopé pour la Base Nationale des Sujets d'Examens de l'enseignement professionnel.

Ce fichier numérique ne peut être reproduit, représenté, adapté ou traduit sans autorisation.

BACCALAUREAT PROFESSIONNEL

Menuiserie aluminium-Verre

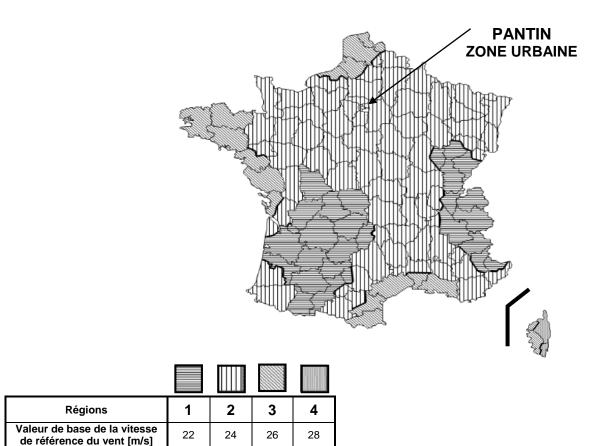
Session 2018

Durée : 3 heures

Coefficient: 2

ÉPREUVE E2
Sous-épreuve E21 (U21)
Analyse technique d'un ouvrage

Ce dossier comporte 7 pages, numérotées de DTC 1 / 7 à DTC 7 / 7.


Assurez-vous que cet exemplaire est complet.

S'il est incomplet, demandez un autre exemplaire au chef de salle.

VÉRIFICATION PERFORMANCES AEV

Extraits de la norme française NF DTU 36.5 P3 (P20-202-3)

DÉFINITION DES RÉGIONS CLIMATIQUES DE VENT

Catégorie de terrain d'environnement de la construction :

On distingue 5 catégories de terrain d'environnement de la construction :

- IV Zones urbaines dont au moins 15 % de la surface sont recouverts de bâtiments dont la hauteur moyenne est supérieure à 15 m ; forêts.
- IIIb Zones urbanisées ou industrielles ; bocage dense ; vergers.
- Illa Campagne avec des haies ; vignobles ; bocages ; habitat dispersé.
- Il Rase campagne, avec ou non quelques obstacles isolés (arbres, bâtiments, etc.) séparés les uns des autres de plus de 40 fois leur hauteur.
- Mer ou zone côtière exposée aux vents de mer ; lacs et plans d'eau parcourus par le vent sur une distance d'au moins 5 km.

On applique la catégorie de terrain 0 lorsqu'ils sont situés à une distance du rivage inférieure à 20 fois la hauteur du bâtiment.

Hauteur du bâtiment au-dessus du sol : H

C'est la hauteur H du bâtiment qui détermine la pression du vent pour toutes les fenêtres de ce bâtiment et non plus, comme précédemment la hauteur d'implantation de la fenêtre par rapport au sol. La hauteur est mesurée au faîtage ou à l'acrotère.

Pour la détermination des valeurs prédéterminées, on distingue 5 classes de hauteur de bâtiment :

H ≤ 9 m

9 m < H ≤ 18 m

18 m < H ≤ 28 m

 $28 \text{ m} < \text{H} \le 50 \text{ m}$

50 m < H ≤ 100 m

Région	Catégorie	gorie Hauteur du bâtiment H (m)		t H (m)			
)	de terrain	H ≤ 9	9 < H ≤ 18	18 < H ≤ 28	28 <h 50<="" th="" ≤=""><th>50 < H ≤ 100</th></h>	50 < H ≤ 100	
France Métropolitaine							
	IV	A*2 E*4 V*A2	A*2 E*4 V*A2	A*2 E*4 V*A2	A*2 E*4 V*A2	A*3 E*4 V*A2	
	IIIb	A* ₂ E* ₄ V* _{A2}	A*2 E*4 V*A2	A*2 E*4 V*A2	A*2 E*4 V*A2	A*3 E*4 V*A2	
1	Illa	A* ₂ E* ₄ V* _{A2}	A*2 E*4 V*A2	A*2 E*4 V*A2	A*3 E*4 V*A2	A*3 E*5 V*A3	
	II	A*2 E*4 V*A2	A*3 E*4 V*A2	A*3 E*4 V*A2	A*3 E*5 V*A2	A*3 E*5 V*A3	
	0	A*3 E*4 V*A2	A*3 E*5 V*A2	A*3 E*5 V*A3	A*3 E*5 V*A3	A*3 E*6 V*A3	
	IV	A* ₂ E* ₄ V* _{A2}	A*2 E*4 V*A2	A*2 E*4 V*A2	A*2 E*4 V*A2	A*3 E*4 V*A2	
	IIIb	A* ₂ E* ₄ V* _{A2}	A*2 E*4 V*A2	A*2 E*4 V*A2	A*3 E*4 V*A2	A*3 E*5 V*A3	
2	Illa	A* ₂ E* ₄ V* _{A2}	A*3 E*4 V*A2	A*3 E*4 V*A2	A*3 E*5 V*A3	A*3 E*5 V*A3	
	II	A*3 E*4 V*A2	A*3 E*4 V*A2	A*3 E*5 V*A3	A*3 E*5 V*A3	A*3 E*6 V*A3	
	0	A*3 E*5 V*A2	A*3 E*5 V*A3	A*3 E*5 V*A3	A*3 E*6 V*A3	A*3 E*6 V*A4	
	IV	A* ₂ E* ₄ V* _{A2}	A*2 E*4 V*A2	A*2 E*4 V*A2	A*3 E*4 V*A2	A*3 E*5 V*A3	
	IIIb	A* ₂ E* ₄ V* _{A2}	A*2 E*4 V*A2	A*3 E*4 V*A2	A*3 E*5 V*A3	A*3 E*6 V*A3	
3	Illa	A* ₂ E* ₄ V* _{A2}	A*3 E*4 V*A2	A*3 E*5 V*A3	A*3 E*5 V*A3	A*3 E*6 V*A3	
	II	A*3 E*4 V*A2	A*3 E*5 V*A3	A*3 E*5 V*A3	A*3 E*6 V*A3	A*3 E*7 V*A4	
	0	A*3 E*5 V*A3	A*3 E*6 V*A3	A*3 E*6 V*A3	A*3 E*7 V*A4	A*3 E*7 V*A4	
	IV	A*2 E*4 V*A2	A*2 E*4 V*A2	A*3 E*4 V*A2	A*3 E*5 V*A2	A*3 E*6 V*A3	
	IIIb	A* ₂ E* ₄ V* _{A2}	A*3 E*4 V*A2	A*3 E*5 V*A2	A*3 E*5 V*A3	A*3 E*6 V*A3	
4	Illa	A*3 E*4 V*A2	A*3 E*5 V*A3	A*3 E*5 V*A3	A*3 E*6 V*A3	A*3 E*7 V*A4	
	II	A* ₃ E* ₅ V* _{A3}	A* ₃ E* ₆ V* _{A3}	A*3 E*6 V*A3	A*3 E*7 V*A4	A*3 E*8 V*A4	
	0	A*3 E*6 V*A3	A*3 E*6 V*A4	A*3 E*7 V*A4	A*3 E*7 V*A4	A*3 E*8 V*A5	

Baccalauréat professionnel Menuiserie aluminium-Verre	Documents techniques complémentaires E21 – Analyse technique d'un ouvrage	1806-OBA T	DTC 2/7	
---	--	------------	---------	--

VÉRIFICATION ÉPAISSEUR DE VITRAGE

Extrait du DTU 39 P4

Définition des zones de vent

Les règles données ci-après pour la détermination de la pression *P* vent sont basées sur une simplification de la NF EN 1991-1-4 et de son Annexe Nationale.

Les quatre zones à prendre en compte en France Métropolitaine sont celles définies dans la NF EN 1991-1-4/NA.

Catégorie de terrain d'environnement de la construction :

On distingue 5 catégories de terrain d'environnement de la construction :

- IV Zones urbaines dont au moins 15% de la surface sont recouverts de bâtiments dont la hauteur moyenne est supérieure à 15 m; forêts.
- IIIb Zones urbanisées ou industrielles ; bocage dense ; vergers.
- Illa Campagne avec des haies ; vignobles ; bocages ; habitat dispersé.
- Il Rase campagne, avec ou non quelques obstacles isolés (arbres, bâtiments, etc.) séparés les uns des autres de plus de 40 fois leur hauteur.
- Mer ou zone côtière exposée aux vents de mer ; lacs et plans d'eau parcourus par le vent sur une distance d'au moins 5 km.

On applique la catégorie de terrain 0 lorsqu'ils sont situés à une distance du rivage inférieure à 20 fois la hauteur du bâtiment.

Dans le cas du littoral méditerranéen, hors Corse, les vitrages dont la situation correspond à la catégorie 0 sont considérés comme en catégorie de terrain II, vis-à-vis des effets du vent.

La catégorie de terrain à prendre en compte est définie dans une zone de rayon R, dépendant de la hauteur du bâtiment. La valeur de R est donnée dans le tableau suivant.

Hauteur H du Bâtiment	H ≤ 9 m	9 < H ≤ 18 m	18 < H ≤ 28 m	28 < H ≤ 50m	50 < H ≤ 100 m
Rayon R	R = 320 m	R = 750 m	R = 1250 m	R = 2500 m	R = 5800 m

Dans le cas où la zone comporte plusieurs catégories de terrain, la plus défavorable sera retenue.

À défaut d'une connaissance précise du contexte urbain, en dehors du centre des grandes villes, on choisira la situation «IIIb».

Baccalauréat professionnel Menuiserie aluminium-Verre

Hauteur *H* du bâtiment

C'est la hauteur *H* du bâtiment au-dessus du sol qui détermine la pression du vent pour tous les vitrages extérieurs de ce bâtiment.

On distingue cinq classes de hauteur de bâtiment :

- $H \le 9 \text{ m}$;
- -9 < H ≤ 18 m;
- $-18 < H \le 28 \text{ m}$;
- -28 < H ≤ 50 m;
- 50 < H ≤ 100 m.

Les pressions de vent exprimées en pascals (Pa) *, à prendre en compte sont données par le tableau ci-contre.

*) 1 Pa = 1 N/m2.

TABLEAU DES PRESSIONS DU VENT (Pa) Calcul de vitrage

Pressions de vent Pvent en (Pa) - France Métropolitaine

Région	Catégorie	Hauteur du bâtiment H (m)				
5	de terrain	H ≤ 9	9 < H ≤ 18	18 < H ≤ 28	28 <h 50<="" th="" ≤=""><th>50 < H ≤ 100</th></h>	50 < H ≤ 100
	IV	850	950	1150	1400	1800
	IIIb	900	1200	1400	1700	2050
1	Illa	1200	1500	1700	2000	2350
	IJ	1500	1800	2050	2300	2650
	0	1900	2150	2350	2600	2900
	IV	1050	1100	1350	1700	2100
	IIIb	1050	1400	1650	2000	2450
2	Illa	1400	1750	2000	2350	2800
	II	1800	2150	2400	2750	3150
	0	2250	2600	2800	3100	3500
	IV	1200	1300	1600	2000	2500
	IIIb	1250	1650	1950	2350	2900
3	Illa	1650	2050	2350	2800	3300
	II	2100	2550	2850	3200	3700
	0	2650	3050	3300	3650	4100
	IV	1400	1500	1850	2300	2900
	IIIb	1450	1950	2250	2750	3350
4	IIIa	1900	2400	2750	3200	3850
	II	2450	2950	3300	3750	4300
	0	3050	3500	3800	4200	4750

Documents techniques complémentaires E21 – Analyse technique d'un ouvrage	1806-OBA T	DTC 3 / 7	
---	------------	-----------	--

CALCUL DE L'ÉPAISSEUR DES VITRAGES VERTICAUX (suite) :

Facteur de réduction « C »

Un facteur de réduction c = 0.9 est à appliquer pour tous les vitrages extérieurs en rez-dechaussée, et dont la partie supérieure est à moins de 6 m du sol extérieur. Dans tous les autres cas, c = 1.0.

PRINCIPE:

- La pression de calcul selon l'Article 6 est utilisée dans les formules ci-après pour déterminer une épaisseur **e1**.
- Un facteur de réduction « C » lié à la situation du châssis est appliqué.
- L'épaisseur e_R intègre les facteurs d'équivalence ϵ du vitrage. Elle doit être au moins égale au produit $(e_1 \times c)$

$e_R \ge e1 \times c$

• Dans tous les cas, on calcule ensuite une épaisseur **e**_F suivant pour vérifier que la flèche respecte les critères fixés. Si la flèche dépasse la valeur admissible, l'épaisseur des composants doit être augmentée jusqu'au respect de l'ensemble des exigences.

Vitrage pris en feuillure		Si L/ℓ ≤ 2,5	$e_1 = \sqrt{\frac{S \times P}{100}}$
sur 4 côtés		Si L/ℓ > 2,5	$e_1 = \frac{\ell x \sqrt{P}}{6.3}$
	<u>'</u>	bord libre est petit côté	$e_1 = \frac{\ell x \sqrt{P}}{6.3}$
Vitrage pris en feuillure sur 3 côtés		Si L/ℓ ≤ 7,5	$e_1 = \sqrt{\frac{3xSxP}{100}}$
	Le bord libre est le grand côté	Si L/t > 7,5	$e_1 = \frac{3 \times \ell \times \sqrt{P}}{6,3}$
Vitrage pris en feuillure sur 2 côtés	Dans ce d longueur d si cette loi côté	$e_1 = \frac{\ell x \sqrt{P}}{6,3}$	

- e₁ = épaisseur du vitrage en mm
- L = plus grand côté en m
- ℓ = plus petit côté en m ou longueur des bords libres pour les vitrages pris en feuillures sur 2 côtés
- S = surface du vitrage en m²
- P = pression conventionnelle en Pa

Facteur d'équivalence des v	suivant DTU 39P4	
Type de vitrage		ε1
Vitrage isolant NF EN 1279	Comportant deux produits verriers	1,60
	Comportant trois produits verriers	2,00

Facteur d'équivalence des vitrages feuilletés Type de vitrage		suivant DTU 39P4
		ε2
Vitrage feuilleté de sécurité	Deux composants verriers	1,30
NF EN ISO 12543-2	Trois composants verriers	1,50
	Quatre composants verriers et plus	1,60
Vitrage feuilleté	Deux composants verriers	1,60
NF EN ISO 12543-3	Trois composants verriers et plus	2,00

Facteur d'équivalence des vitrages simples monolithiques	suivant DTU 39P4
Type de vitrage	ε3
Vitrage recuit NF EN 572-2	1
Vitrage recuit armé NF EN 572-3	1,2
Vitrage étiré NF EN 572-4	1,1
Vitrage imprimé NF EN 572-5	1,1
Vitrage imprimé armé NF EN 572-6	1,3
Vitrage trempé NF EN 12150 ou NF EN 14179	0,61

Le coefficient α prend en compte le module d'élasticité du verre (E = 70 GPa).

Vitrage en appui sur 4 côtés

Valeurs du coefficie	ent
Rapport largeur /longueur (ℓ / L)	α
1	0,6571
0,9	0,8000
0,8	0,9714
0,7	1,1857
0,6	1,4143
0,5	1,6429
0,4	1,8714
0,3	2,1000
0,2	2,1000
0,1	2,1143
< 0,1	2,1143

NOTA : arrondir le rapport ℓ / L au dixième inférieur

Baccalauréat professionnel Menuiserie aluminium-Verre	Documents techniques complémentaires E21 – Analyse technique d'un ouvrage	1806-OBA T	DTC 4/7	
---	--	------------	---------	--

CALCUL DE L'EPAISSEUR DES VITRAGES VERTICAUX (suite) :

• Vérification de la résistance du vitrage eR

eR est l'épaisseur équivalente pour le calcul de résistance.

La résistance d'un vitrage dépend de son épaisseur et de sa nature (recuit, trempé, imprimé, etc.). Dans le cas d'un assemblage associant des composants de nature différente, seule la valeur maximale des coefficients $\varepsilon 3$, MAX ($\varepsilon 3$), est à prendre en compte.

Lorsque l'épaisseur e_R est inférieure à l'épaisseur nominale du composant le plus épais, *e*_R est pris égal à l'épaisseur de ce seul composant.

Il faut vérifier que :

 $e_R \ge e1 \times c$

Pour un vitrage isolant

L'épaisseur *e*_R est égale à la somme des épaisseurs nominales des composants, monolithiques, le tout divisé par le produit du coefficient ε1 et de *MAX* (ε3).

Calcul de eR pour un vitrage isolant double avec deux composants monolithiques :

$$e_R = \frac{e_i + e_j}{0.9 \times \epsilon 1 \times MAX(\epsilon 3)}$$

• Calcul de la flèche du vitrage :

$$f = \alpha * \frac{P}{1,5} * \frac{b^4}{e_F^3}$$

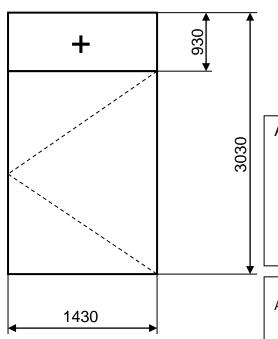
Avec b = largeur du vitrage en m P = pression en Pa e_F = en mm

Dans le cas des vitrages extérieurs en appui sur leur périphérie, la flèche maximale au centre doit être inférieure au **1/60e du petit côté**, et **limitée à 30 mm**.

Calcul de ef

 e_F est l'épaisseur équivalente correspondant à la somme des épaisseurs des vitrages monolithiques ou feuilletés, pondérés des coefficients $\epsilon 1$ et $\epsilon 2$.

Lorsque l'épaisseur *e*_F est inférieure à l'épaisseur du composant le plus épais, l'épaisseur peut être prise égale à ce seul composant.


Vitrage Isolant double avec deux composants monolithiques

L'épaisseur *e*_F est égale à la somme des épaisseurs nominales des composants monolithiques, le tout divisé par le coefficient ε1

<u>Avec</u>:

ei et ej = épaisseur de chaque composant du vitrage isolant

Valeur des inerties

$$I = \frac{F \ell}{24 E f}$$
 (3 L² - 4 ℓ^2)

Avec:

• I en cm⁴

en N Force sur les cales

• L en cm • ℓ en cm

• E = N/cm²

• f = 0,4 cm

Distance entre appuis Emplacement de la cale d'assise Module d'élasticité

Flèche maxi de la traverse

Inertie minimum recherchée

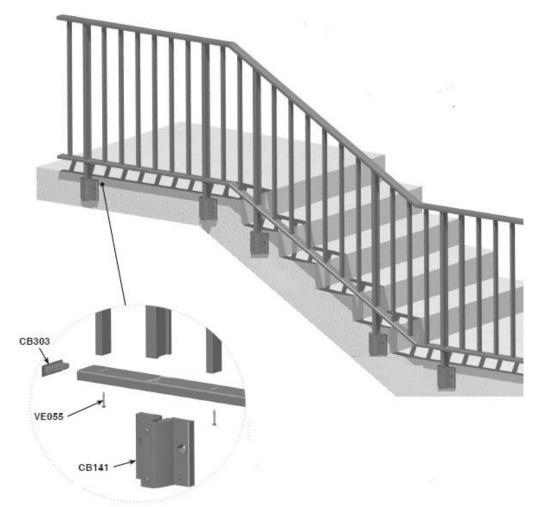
• P = 2,5 kg/m²/mm d'épaisseur Masse du vitrage

Aluminium

Module d'élasticité (ou module de Young)

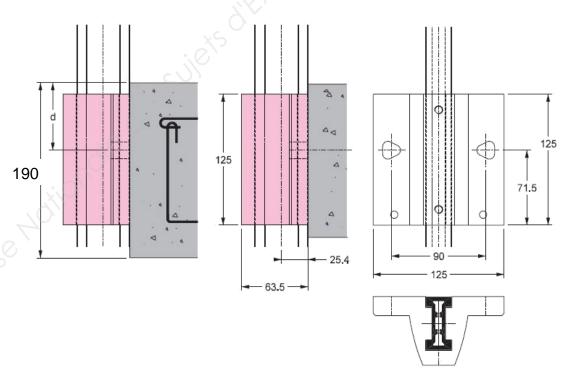
 $E = 700\ 000\ daN/cm^2 = 7\ 000\ 000\ N/cm^2$

Ressources:

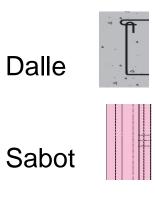

- L = 1376 mm
- Composition du vitrage de l'imposte : DV 4 / 12 / 6
- Dimensions vitrage-imposte : 1364 mm x 864

	P		de des		
ℓ = 6,5	$F = \frac{P}{2}$		≥ 40	ℓ ≥ 50	
	L	—	Emplaceme	ent des cales d'assise en mm selon le DTU 39	

x — y x'	Réf.	lxx' (cm4)	lyy' (cm4)	lxx'/v (cm3)	lyy'/v (cm3)	x — y x'	Réf.	lxx' (cm4)	lyy' (cm4)	lxx'/v (cm3)	lyy'/v (cm3)
	215056	9.24	2.22	4.35	1.64		215204	16.04	19.20	6.37	4.27
	215059	13.89	12.83	6.54	5.13		215205	18.16	28.82	7.34	5.76
	215060	17.93	32.09	8.44	9.17		215207	22.34	56.96	9.27	9.49
	215078	12.66	9.36	5.26	2.60		215208	24.41	76.10	10.23	11.71
	215096	19.49	26.69	9.17	5.93		215211	31.29	158.94	13.60	19.87
	215180	18.16	6.33	7.17	2.83		215195	8.41	5.53	3.13	2.22
	215181	22.71	13.59	8.77	4.41		215196	8.72	6.08	3.30	2.36
	215182	16.72	5.66	6.36	2.49		215197	8.49	5.59	3.14	2.23
	215183	17.39	5.91	6.73	2.62		215198	28.08	35.95	9.87	6.74
	215186	17.78	7.50	5.66	2.08		215202	13.14	10.45	5.07	2.71


Choix des chevilles avec platine CB 141

Principe de pose du garde-corps



		Marque Spit	Marque Hilti		
Lieux Privés (L = 1,6 m maxi)		Maxima M10	HVU		
	Ép de dalle mini	155	160		
3	d mini bord de dalle	80	80		
	Publics 5 m maxi)	Maxima M10	HVU		
X	Ép de dalle mini	200	170		
	d mini bord de dalle	100	70		

Configuration de pose

