	Groupement Est	Session 2000	SUJET	TIRAGES
	C.A.P. Secteur 2 - BATIMENT			
Épreuve :	Mathématiques	Durée : 2 heures	page 1/6	
е	t Sciences Physiques			

- La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.
- L'usage de la calculatrice est autorisé.

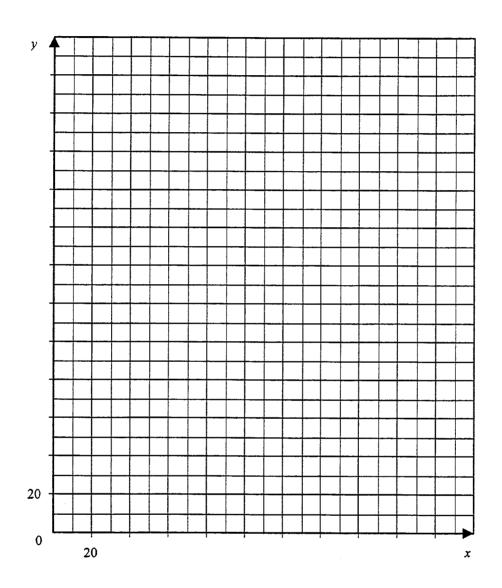
MATHEMATIQUES

EXERCICE 1

(5 points)

On obtient de l'enduit en mélangeant un sac contenant 40 kg de plâtre avec 45 L d'eau. Le volume y d'eau en litres rajouté est proportionnel à la masse x de plâtre en kilogrammes.

1. Compléter le tableau ci-dessous :

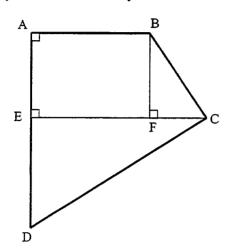

Masse de plâtre en kg	40	160		
x				$ \times a $
Volume d'eau en L			225	
y		}		'

- 2. Représenter graphiquement la fonction f définie par $f(x) = 1{,}125 x$ dans le repère de la page 2/6 pour x compris entre 0 et 200.
- 3. Déterminer graphiquement en laissant apparents les traits permettant la lecture :
- 4. Avec 25 kg de plâtre on peut enduire 5 m² de mur.
 - a) Calculer la masse de plâtre nécessaire pour enduire un mur de 18 m².

b) Sachant qu'un sac contient 40 kg de plâtre, calculer le nombre de sacs à prévoir pour enduire ce mur.

Groupement Est	Session 2000	SUJET	TIRAGES
C.A.P. Secteur 2 - BA	code :	-	
Épreuve : Mathématiques	Durée : 2 heures	page 2/6	
et Sciences Physiques			

Représentation graphique de la fonction f



Groupement Est	Session 2000	SUJET	TIRAGES
C.A.P. Secteur 2 - BA	code :		
Épreuve : Mathématiques	Durée : 2 heures	page 3/6	
et Sciences Physiques			

EXERCICE 2

(5 points)

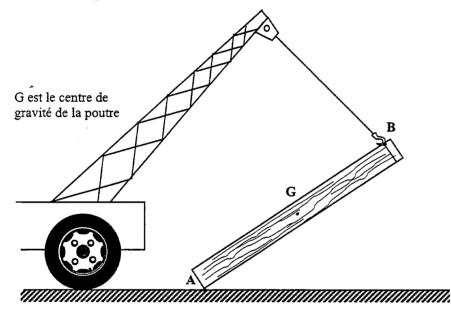
La salle du foyer des élèves d'un lycée a la forme ci-dessous :

On donne:

AB = 15 m; EC = 20 m; AE = 12 m; DC = 25 m.

On veut isoler le plafond de cette salle en plaçant des panneaux d'isolation phonique puis en posant une corniche de finition.

1.	Calculer la longueur FC:
2.	Calculer:
a	a) la longueur BC:
b	o) la longueur ED:
c	e) le périmètre de cette salle :
3.	Calculer:
a) l'aire du trapèze ABCE :
b) l'aire du triangle ECD :
c	e) l'aire totale du plafond de cette salle:
	L'artisan chargé des travaux facture 70 F le mètre linéaire de corniche et 180 F le m² d'isolation. Calculer le coût total de l'isolation :


	Groupement Est	Session 2000	SUJET	TIRAGES
	C.A.P. Secteur 2 - BATI	code:]	
Épreuve :	Mathématiques	Durée : 2 heures	page 4/6	
,	et Sciences Physiques			

SCIENCES PHYSIQUES

EXERCICE 3 (4 points)

Une poutre de masse 400 kg est maintenue en équilibre sous l'action de trois forces :

- son poids \vec{P} ;
- la force $\overrightarrow{F_B}$ exercée par le câble en B;
- la force $\overline{F_A}$ exercée par le sol en A.

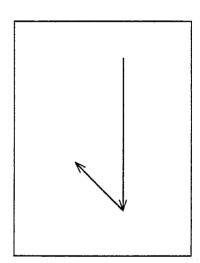


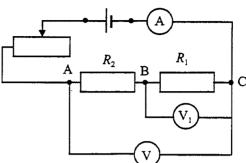
Figure 2: dynamique des forces

Figure 1

1. Calculer la valeur du poids de la poutre en prenant g = 10 N/kg.

.....

- 2. Sur la figure 1:
 - a) représenter le poids \overrightarrow{P} de la poutre en prenant pour échelle 1 cm pour 1000 N ;
 - b) déterminer le point d'intersection I, de la droite d'action du poids \overrightarrow{P} et de la droite d'action de la force $\overrightarrow{F_B}$;
- c) tracer la droite d'action de la force $\overline{F_A}$ (On rappelle que dans ce cas, les droites d'action des forces \overline{P} , $\overline{F_A}$ et $\overline{F_B}$ sont concourantes).
- 3. a) Compléter et annoter le dynamique des forces de la figure 2;


Groupement Est	Session 2000	SUJET	TIRAGES
C.A.P. Secteur 2 - B	code:		
Épreuve : Mathématiques	Durée : 2 heures	page 5/6	
et Sciences Physiques			

			-
EXE	КC	ICE	4

(3 points)

On considère le montage électrique ci-contre. L'ampèremètre (A) indique I=0,4 A. Le voltmètre (V) indique $U_{BC}=4$ V.

1. Calculer la valeur de la résistance R_1 :

2.	Sachant que le voltmètre	V	indique $U_{AC} = 10^{\circ}$	V, calculer:
----	--------------------------	---	-------------------------------	--------------

- a) la tension U_{AB} :.....
- b) la valeur de la résistance R_2 :.....

EXERCICE 5 (3 points)

Une maison est chauffée au gaz propane de formule brute C₃H₈.

- 1. Donner le nom des atomes entrant dans la composition d'une molécule de gaz propane :

- 3. Dans la chaudière, le propane brûle avec l'oxygène de l'air en donnant un dégagement de dioxyde de carbone et de vapeur d'eau. On considère que cette combustion est complète. L'équation-bilan de la réaction est :

$$C_3H_8 + 5 O_2$$
 \longrightarrow 3 $CO_2 + 4 H_2O$

Calculer:

- b) le nombre de moles de dioxygène nécessaire à la combustion des 132 g de propane :
- c) le volume de dioxygène correspondant, dans les conditions normales de température et de pression.

M(H) = 1 g/mol; M(C) = 12 g/mol.

Le volume molaire est de 22,4 L/mol dans les conditions normales de température et de pression.

Groupement Est	Session 2000	SUJET	TIRAGES
C.A.P. Secteur 2 - BAT	MENT	code:	
Épreuve : Mathématiques	Durée : 2 heures	page 6/6	
et Sciences Physiques			

FORMULAIRE DE MATHÉMATIQUES

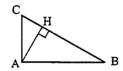
Identités remarquables

$$(a + b)^2 = a^2 + 2 a b + b^2;$$

 $(a - b)^2 = a^2 - 2 a b + b^2;$
 $(a + b)(a - b) = a^2 - b^2.$

Puissance d'un nombre

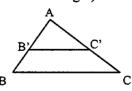
$$\frac{2 \text{ classative a difficiency}}{10^0 = 1 \text{ ; } 10^1 = 10 \text{ ; } 10^2 = 100 \text{ ; } 10^3 = 1000.$$


$$A^2 = a \times a \text{ ; } a^3 = a \times a \times a.$$

Proportionnalité

A et b sont proportionnels à c et d si $\frac{a}{c} = \frac{b}{d}$.

Relations métriques dans le triangle rectangle


$$AB^2 + AC^2 = BC^2$$

 $AH.BC = AB.AC$

$$\sin \hat{B} = \frac{AB}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$.

Enoncé de Thalès (relatif au triangle)

$$\frac{\text{Si (BC) // (B'C'),}}{\text{alors } \frac{\text{AB}}{\text{AB'}} = \frac{\text{AC}}{\text{AC'}}}$$

Aires dans le plan

Triangle:
$$\frac{1}{2}Bh$$
.

Parallélogramme : B h.

Trapèze:
$$\frac{1}{2}(B+b)h$$

Disque: πR^2

Secteur circulaire angle α en degré :

$$\frac{\alpha}{360} \pi R^2.$$

Aires et volumes dans l'espace

Cylindre de révolution ou Prisme droit

d'aire de base B et de hauteur h:

Volume: B h.

Sphère de rayon R:

Aire : $4 \pi R^2$. Volume : $\frac{4}{3} \pi R^3$.

Cône de révolution ou Pyramide

de base B et de hauteur h:

Volume: $\frac{1}{3}Bh$.