BEP ET CAP ELECTROTECHNIQUE SESSION 2000

EPREUVE E.P.3. EXPERIMENTATION SCIENTIFIQUE ET TECHNIQUE

A PRENDRE CONNAISSANCE AVANT LE DEBUT DE L'EPREUVE

Durée de l'épreuve : 4 h

Le sujet proposé tient compte d'une répartition prévisionnelle du temps :

- 3 heures pour le thème d'expérimentation
- 1 heure pour le thème d'application numérique

Cependant, le candidat peut gérer comme il lui convient la totalité des 4 heures allouées à l'épreuve.

CONSIGNES A RESPECTER POUR CETTE EPREUVE

A) EXPERIMENTATION

* Vous ne commencez le câblage qu'après avoir présenté votre schéma à l'examinateur.

NE PAS METRICISCUSTIENSION

- * Vous ne mettez sous tension qu'après accord de l'examinateur.
- * Toute modification du montage doit se faire hors tension et la remise en service doit se faire sous contrôle de l'examinateur.
- * Vous ne décâblez votre montage qu'à la fin de l'épreuve, après vous être bien assuré de la mise hors tension.
- * N'hésitez pas à faire appel à l'examinateur au moindre incident.
- * Vous devez rédiger vos réponses sur la copie fournie, si nécessaire.

B) APPLICATION NUMERIQUE

- * Il n'y a pas de câblage ni de mesures à effectuer dans cette partie de l'épreuve.
- * Il s'agit d'exploiter des résultats issus de mesures déjà réalisées ou (et) d'appliquer les lois d'électrotechnique
- * Vous devez rédiger directement vos réponses sur le sujet.

(Eviter les ratures, il ne sera pas fourni d'autre exemplaire)

ATTENTION

Répondre dans les cases prévues Préciser les formules utilisées

<u>C) A LA FIN DE L'EPREUVE</u>, avant de quitter la salle, remettez vos copies, sujets et brouillons à l'examinateur

CANDIDAT: NOM:

Prénom:

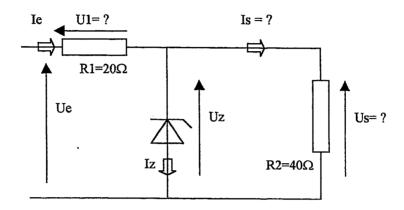
INSTALLATION ELECTRIQUE TRIPHASEE COMMANDE D'UN MOTEUR ASYNCHRONE

Le candidat interviendra à l'intérieur et à l'extérieur du coffret en respectant les règles de sécurité.

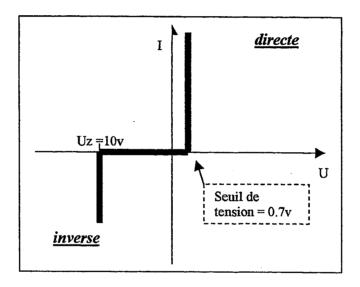
1 PREPARATION

1 PREPARATION			-
1.1 Partie puissance	AIDE	BEP	CAP
- connaissant la tension d'alimentation du réseau, relever sur la plaque signalétique du moteur : la puissance utile, le rendement, le cos ϕ et le courant nominal In.		/1	/1
- Indiquer le couplage à effectuer		/2	/2
- Indiquer la valeur de réglage du relais thermique		/2	/2
- Calculer la puissance absorbée par le moteur		/1	/1
1.2 Partie commande			
- relever sur la plaque signalétique du transformateur : la puissance apparente, la tension primaire U1 et la tension secondaire U2.		/1	/1
- Calculer le rapport de transformation		/0,5	/0,5
- Calculer le courant secondaire I2 correspondant à la charge nominale		/1	/0,5
BEP UNIQUEMENT			
1.3 Relais thermique			
- à l'aide de la courbe de déclenchement (à chaud) fournie par le constructeur, déterminer le temps de déclenchement du relais thermique pour une valeur de I moteur correspondant à 1,5 In		/1,5	×
Aide totale : T Aide partielle : P			
Total page 1		/10	/08

A REMPLIR PAR LES EXAMINATEURS DE L'EPREUVE E.P.3


Toute aide apportée par les examinateurs sera précisée dans le cadre prévu à cet effet afin de justifier, le cas échéant, la note obtenue.

		B.E.P.	C.A.P.	
NUMERO D'INSCI	RIPTION			
E	VALUATION	I DU CANDIDA	T	
	B.E.P.	C.A.P. Aid	e apportée (le	cas échéant)
EXPERIMENTATION	/30	/24		
APPLICATION NUMERIQUE	/30	/16		
TOTALOBIENU	/60	/40		
		RTER AU PV	BEP	
Note sur 20 en points entiers		RTER AU PV	CAP	


	AIDE	BEP	CAP
2 MESURES Total report page 1			
2.1 Partie puissance			
- Réaliser la partie du schéma (sans la charge) pour la mesure de U, I et de Pa du moteur.		/4	/4
- Régler le relais thermique		/1	/1
- Coupler le moteur		/2	/2
- Mettre en service le moteur en réglant sa charge à la valeur de In		/1	/1
- Relever U, I, Pa et déterminer le cos φ		/3	/2,5
2.2 Partie commande			
- Relais thermique : BEP UNIQUEMENT			·
Laisser le moteur fonctionner quelques minutes à sa charge nominale In			
- Régler ensuite, à l'aide de la charge, l'intensité absorbée par le moteur à 1,5 In et contrôler le temps de déclenchement du relais thermique dans ces conditions.		/1	×
- Comparer ce temps avec celui déterminé dans l'étude préalable.		/1	\times
- Transformateur : CAP et BEP			
A vide: - mesurer la tension primaire U1, la tension secondaire U2		/1	/1
- calculer le rapport de transformation		/1	/0,5
En charge: - mesurer la tension primaire U1, la tension secondaire U2		/1	/1
- comparer le rapport de transformation avec celui calculé dans l'étude préalable		/1	/0,5
- calculer la chute de tension au secondaire		/1	/0,5
RESPECT DES CONSIGNES DE SECURITE		/2	/2
Aide totale : T Aide partielle : P		12.5	
Total à reporter		/30	/24

DIODE ZENER

On donne un montage avec une diode zéner considérée comme idéale. Sa tension de zéner est Uz= 10v.

Rappel: caractéristiques d'une diode zéner

On vous demande de calculer :

1 – L'intensité Is en mA pour Ue=6v:

			BAI	EME			
Question	1	2	3	4	5	6	Note
CAP	/4	/4	/2	/3	/3		/16
BEP	/6	/6	/5	/5	/5	/5	/30

2 – La valeur de Us lorsque Ue est de 6v :
Ue=18v pour le reste de l'exercice :
3 – Donner la valeur de Uz:
4 – Calculer Is en mA:
5 - Calculer U1 (tension aux bornes de R1):
5 Calcular of (tension and bornes de RT).
6 – Calculer Ie en mA.

Groupement "Est"	Sessi	Session 2000		ujet 8A	TIRAGES
Examen et spécialité : B.E.P.et C.A.P.	Electrotechnique.	CODE	(S) EXA	MEN(S) :	
Epreuve :EP3 -Expérimentation scientifique et technique	Durée totale B.E.P. Durée totale C.A.P.		Coe Coe		
Partie : Application numérique.	Durée B.E.P. : 1 h 00 . (conseillée)			page 1/1	
Nom et prénom du candidat. :		· 		4	<u></u>

PUISSANCE EN TRIPHASE

Matériel à fournir : une feuille de papier millimétré

Dans un atelier, une machine broyeuse de matières plastiques comporte les équipements suivants :

- 1 moteur asynchrone triphasé M1 pour entraîner le broyeur.
- 1 moteur asynchrone triphasé M2 pour entraîner le tapis roulant qui alimente la machine en matière plastique.
- 1 moteur asynchrone triphasé M3 pour entraîner le tapis roulant qui évacue le plastique broyé.
- 1 système triphasé de chauffage à résistances pour chauffer les matières plastiques afin de faciliter leur broyage.

La machine est alimentée par un réseau triphasé 410 V.

La plaque signalétique du moteur M1 indique qu'il a une puissance utile de 4 kW, un rendement de 80% et un facteur de puissance $\cos \varphi = 0.82$.

Les moteurs M2 et M3 sont identiques. Ils absorbent chacun un courant de 6 A, et ont tous deux un facteur de puissance $\cos \varphi = 0.7$.

1. Déterminer la puissance active absorbée par chacun des 4 récepteurs.

M1	M2
Chauffage	M3

2. Calculer la puissance réactive de chacun des 4 récepteurs.

M1	M2	-
Chauffage	M3	

QUESTIONS	1	2	3	4	5	6	7	8	9	NOTE
CAP	/4	/4	/2	/2	/2	/2				/1.0
BEP	/4	/4	/2	/2	/2	/2	/6	/3	/5	/30

Pour une machine broyeuse de matières plastiques :

- 3. Calculer la puissance active totale absorbée par la machine.
- 4. Calculer la puissance réactive totale absorbée par la machine.
- 5. Calculer la puissance apparente de la machine.
- 6. Calculer le courant total absorbé parla machine.

B.E.P SEULEMENT. (pour la machine broyeuse de matières plastiques)

- 7. Dessiner sur une feuille de papier millimétré, le diagramme des puissances de la machine.
- 8. Déterminer par le graphique la valeur du facteur de puissance global.
- 9. Déduire graphiquement la valeur Qc (puissance réactive fournie par les condensateurs) pour avoir $tan \varphi = 0,4$.

Groupement "Est"	n 2000	SL	JJET 8B	TIRAGES	
Examen et spécialité : B.E.P. et C.A.P. Ele	ectrotechnique.	Code	(s) exan	nen(s) :	
Épreuve :EP3 –Expérimentation scientifique et technique		Durée totale B.E.P. : 4 heures Durée totale C.A.P. : 4 heures		Coef. B.E.P. : 3 Coef. C.A.P. : 2	
Partie : Application numérique.	Durée B.E.P. : 1 h 00 (conseillée)	Durée C.A.P.: 1 h (conseillée)		page 1/1	

TRANSFORMATEUR MONOPHASÉ

On étudie un transformateur monophasé de puissance apparente S = 1kVA.

Relevé des caractéristiques à vide:

Uı	Iıv	Pıv	U2v	
230V	0,625A	32,3W	50V	

1. Calculer S1v puis Q1v.

- 2. Calculer le facteur de puissance $cos \phi_{1V}$.
- 3. Calculer les pertes par effet joule à vide Pj $_{1}$ v sachant que la résistance du primaire est de 0,826 Ω .
- 4. Déterminer les pertes fer du transformateur Pf.

Questions	1	2	3	4	5	6	7	8	9	Note
CAP	/2	/2	/2	/2	/3	/2				
ВЕР	/3	/3	/3	/3	/3	/3	/4	/4	/4	/30

Relevé des caractéristiques en charge:

Uı	Iı	I2	U2
230V	4,92A	20,9A	48V

- 5. Calculer la puissance P2 fournie sur charge résistive au secondaire du transformateur.
- 6. Calculer les pertes par effet joule du transformateur en charge, sachant que la résistance du secondaire est de $0,046~\Omega$.
- 7. Calculer les pertes totales du transformateur en charge.

BEP SEULEMENT.

- 8. Calculer P1 puis le rendement du transformateur.
- 9. Calculer le facteur de puissance $\cos \phi_1$ en charge .

Groupement "Est"	Session	Session 2000		SUJET 8C	
Examen et spécialité : B.E.P. et C.A.P. Electrotechnique. Code(s) examen(s) :					
Épreuve :EP3 –Expérimentation scientifique et technique	Durée totale B.E.P. : Durée totale C.A.P. :	Coef. B.E.P. : 3 Coef. C.A.P. : 2			
Partie : Application numérique.	Durée B.E.P. : 1 h 00 (conseillée)	Durée C.A.P. : 1 h (conseillée)		page 1/1	

Nom et prénom du candidat. :