	Académie:	Session:							
	Examen:		Série :						
	Spécialité/option :	pécialité/option : Repère de l'épreuve :							
	Epreuve/sous épreuve :								
)RE	NOM								
ZAĽ	(en majuscule, suivi s'il y a lieu, du nom d'épouse)								
Œ (Prénoms :	n° du candidat							
DANS CE CADRE	Né(e) le :								
JAN		(le numéro est celui qui figure s	sur la convocation ou liste d'appel)						
NE RIEN ECRIRE	Rendre la totalité du sujet agrafe Le matériel autorisé comprend toutes la alphanumériques ou à écran graphique à ce fait usage d'imprimante. Ce sujet comporte pages numéroté (1ère partie : chimie, 2ème partie : physiq	es calculatrices de poche y compris ondition que leur fonctionnement soit au es de 1/ à /, comprenant 3 partie	tonome et qu'il ne soit pas						
		PARTIE CHIMIE							
	EXERCICE 1 (11 points)								
	Dans les conditions normales de to dans la synthèse industrielle des en	-	oniac NH ₃ est un gaz utilisé						
Connaissant l	a représentation symbolique des élémen	nts azote et hydrogène : ¹⁴ / ₇ N et ¹ / ₁	H indiquer :						
a) le n	nombre de protons, de neutrons et d'élec	ctrons de chacun des deux atome	·S.						
	structure électronique et la représentatio								
c) la r	représentation de Lewis de la molécule	d'ammoniac.							
l) Le phospha l'ammoniae	ate d'ammonium $(NH_4)_3PO_4$, est un en c.	grais obtenu par action de l'acid	e phosphorique H ₃ PO ₄ sur						

CAP EMPLOYE	TECHNIQUE DE L	LABORATOIRE	50 22002	SUJET	Session 2000
EPREUVE /	SCIENCES APPLIQUE	ES Durée 3	heures :	Coef. 4	g Pa 1& 15

a) équilibrer l'équation de la réaction de synthèse du phosphate d'ammonium $H_3PO_4 + NH_3 \rightarrow (NH_4)_3PO_4$

- b) calculer la masse molaire du phosphate d'ammonium.
- c) déterminer le nombre de moles contenues dans 1 tonne de cet engrais.
- d) quel volume d'ammoniac faut-il utiliser pour produire 1 tonne de cet engrais ? Exprimer le volume obtenu en m³.

Données : M(H) = 1g/mol; M(N) = 14 g/mol; M(P) = 31 g/mol; M(0) = 16 g/mol. Volume molaire dans les CNTP 22,4 L/mol 1 tonne = 1000 kg.

EXERCICE 2: (8 points)

Au laboratoire, on peut préparer de petites quantités de dihydrogène gazeux par l'action d'une solution d'acide chlorhydrique sur la limaille de fer. Connaissant les couples oxydoréduction H^+/H_2 et Fe^{2+} /Fe.

1) Écrire chacune des demi-équations électroniques.

- 2) En déduire l'équation de cette réaction. Préciser l'oxydant et le réducteur.
- 3) Calculer le pH d'une solution d'acide chlorhydrique de concentration $C = 2.0 \cdot 10^{-2} \text{ mol/L}$.
- 4) On dispose d'une solution d'hydroxyde de sodium ayant une valeur de pH = 12,3. Calculer la concentration en ion $o\kappa$.

5) Un bécher contient 1000 mL de la solution d'acide chlorhydrique à 2,0 ; 10^{-2} mol/L. On ajoute 500 mL de la solution d'hydroxyde de sodium. On suit l'évolution de pH à l'aide d'un pH-mètre. Sans faire de calcul, indiquer la variation de la valeur de pH. Préciser le caractère acide, basique ou neutre de cette solution.

EXERCICE 3 (12 points)

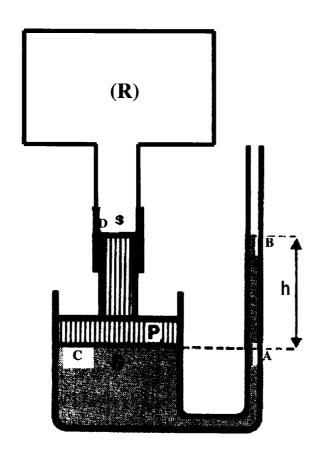
La formule brute générale d'un acide organique est $C_nH_{2n}O_2$. Sa masse molaire est de M=88g./mol.

1) Quel est la formule brute et la formule semi-développée de cet acide ? Quel est son nom ?

2) Calculer sa composition centésimale massique.

3) L'acide butanoïque provient de l'oxydation d'un alcool . Cette réaction se fait en deux étapes.
a) indiquer le nom et la classe de cet alcool.
b) déterminer le nom et la fonction du composé intermédiaire.
4) Obtient cet alcool par hydratation d'un alcène.
a) écrire la formule semi-développée de cet alcène et indiquer son nom.
b) écrire l'équation de la réaction.
EXERCICE 4: (4 points)
L'hélianthine est un composé organique utilisé en solution au laboratoire.
1) Dans quel cas utilise-t-on I'hélianthine ?
2) Quel est son rôle ?
La formule de I'hélianthine est $C_{14}H_{15}O_3N_3S$.
3) Justifier que cette molécule fasse partie des composés organiques.
4) L'hélianthine est aussi appelée orange de méthyle. Donner la formule développée du radical méthyle.

											_
	18	He Klium	20,2	Ar 18 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Kr. 36 Kr. serjeson krypson ki,8	129 Xe s4 Xe xdman 131,3	Rn February Reserved		175 Lu 71 hutium 175,0	260 LW 103 LW	
	17		19 F 19,0	35 C1 Shore 35.5	Br IS brome 27,14	127 53 126,	210 ES At ESSAT 2210		174 Yb 70 71terbium 173,0	259 102 Nobelium - 259	
4.7	16		16 007getne 16.0	35 16 S	So Se selenium	130 Te schure 127,6	Po Bu Pobonium - 209		Tm 69 69 thulium 168,9	258 Md 101 mendélévium -258	
	15		Z zore	31 15 phospibure 31,0	75 33 40 AS 40 AS	Stationships 121,7	Bi 83 bismuth 20%,0		166 Er 68 crisium 167,3	257 100 fermium ~257	
	14		12 C carbone 12,0	28 14 silicium 28,1	Na Ge Remanium Remanium 72.6	130 50 613111	208 82 Phomb 207,2		165 Ho 67 halonium 164.9	254 Es w Es cinvicinium	
	13		E	Auminium 27.0	Kalfium	115 Ln +4 Ln 114,8	205 81 thallium 204,4		164 Dy 666 dysprosium 162,5	251 Cf	
e e e e e e e e e e e e e e e e e e e	12		-		$\sum_{m=1}^{24} Z_{n}^{24}$	Calminum Calminum 122-1	202 80 Hg INCTUTE 200,6	X	TP TS 65 158.9	247 y7 Bk berkelium -247	
; ; ;	11	nent	omique mol ⁻¹)		cuive ouive 6.1.5	107 47 Ag arpent 107.9	$^{197}_{\gamma\gamma}\Lambda_{\rm u}$	X	158 Gd	Curium	
: دي	10	symbole de l'élément	masse molaire atomique de l'élément (g·mol ⁻¹)		Sk Zi		$^{195}_{78}$ Pt $^{1941inc}_{195,1}$	X	153 Eu 63 Eu 152,0	Am 95 smetrium	
MIQUE	6	symbole	masse m de l'élén		Sy Co 27 Co cobalt SR,9	103 45 Abadeun 102,9	193 77 iridium 192,2	IN Mt	Sm 62 Sm Laminum 150,4	244 Pu 94 Pu 1940 Pu 1940 Pu 1944	
S CHII	∞				Sh Fe	Ru rathenium 101,1	192 26 0smium 190,2	Hs hassium	146 pm 61 pr.m.éthium 7.145	$\sum_{p_1}^{217} Np^*_{p_1}$	
JES ÉLÉMENTS CHIMIQUES	7	X	nom		SS Mn 25 manganese	Tc.	187 Re 75 Re 186,2	NS 107 NS nichbohrum	PZ	238 U 92 U uranium 238,0	
s élé	9	asse	.ge mique)		S2Cr chrome S2,0	98 42 mulphalene 95,9	184 W 74 cumpatène 183,9	Sg seahurgium	271 141 Pr 59 prateculyme 140,9	33 Pa 91 Pa Pa Pa Patrinium Patriniu	
	ار.	le m pe le	nombre de charge — (ou numéro atomique)		V 12 23 Saya	i		262 105 Ha habniun - 262	·4	0	
NODIC	4	nombre c de l'isoto abondant	ou nu)		48 T: 22 Ti itiane 17,9	$^{90}_{ m to}Z_{ m r}^{ m site}$	180 Hf 72 Hsfnium 178,5		- Lanthanides: 57 139 La 140 Ce 138,9 140,1	-Actinides: 89 à 227 Ac 227 Project de 227 Project	
N PÉR	3				45 Sc 21 Scandium 45,0	Y v.c.	T	A .		<	
CATIO	7		Be kryllium	24 Mg 12 Mg magnésium 24.3	Calcium	SE ST 38 ST strantium 87,6	138 56 Ba baryum 137,3	226 Ra 126,0			
CLASSIFICATION PÉRIODIQUE		1 hydrogene t,0	Li Bishium 6,9	-	39 K 19 K Potassium 39,1	:	133 Cs 55 Cs cesium 132,9	223 Fr framium			
LA CL/	colonnes périodes	1	2	8	4	5	9	7			
CAP	EMPLOY DELABO				SUJET	SESSION	2000	EPREUVE	:/-scieN(:es	APPLIQUEES	Page 6/ 15


PARTIE PHYSIQUE

EXERCICE 1 (7 points) (Les questions sont indépendantes)

La figure ci-dessous représente un manomètre destiné à mesurer la pression d'un fluide contenu dans le récipient (R).

Données:

h = 20 cm g = 10 N / kg s = 5 cm² S = 1000 cm² pc = 128 500 Pa ρ_{Hg} = 13 600 kg / m³ f = 12 850N

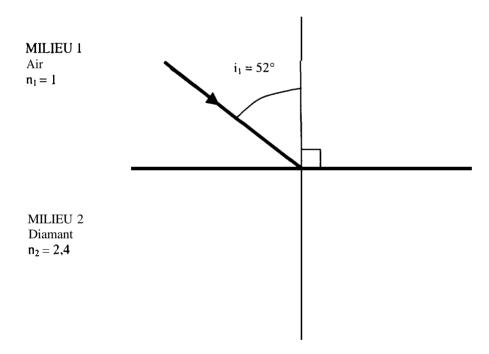
1) Calculer la différence de pression, en pascals, entre les points A et B, correspondant à une dénivellation h de 20 centimètres de mercure. (On prendra g = 10 N / kg)

2) La	ı pression en u	n point C s	itué sous le	grand pi	iston est	: pc =	128	500 F	Pa. En	déduire	la pı	ession	au j	point A
pu	is au point B.	Quel nom o	donne-t-on	couramm	nent à la	pressio	n au	poin	t B ?					

3) Calculer la valeur de la force pressante exercée par le mercure sur le grand piston.

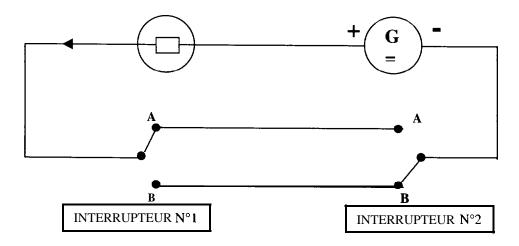
4) Pour que le piston soit en équilibre, le fluide doit exercer sur celui-ci une force de valeur 12850 N. (On ne tient pas compte du poids \mathbf{du} piston) Calculer la pression \mathbf{p}_D du fluide à l'intérieur \mathbf{du} récipient (R).

EXERCICE 2 (5 points)


Un rayon lumineux se propage dans l'air d'indice de réfraction $n_1 = 1$ et arrive sur la surface d'un diamant d'indice de réfraction $n_2 = 2,4$, avec un angle d'incidence $i_1 = 52$ ". (voir schéma page 9/15).

1) Calculer l'angle de réfraction dans le diamant.

2) Calculer la vitesse de propagation de la lumière dans le diamant.


(On rappelle : $n = \frac{C}{V}$; vitesse de propagation de la lumière dans le vide : $C = 300\,000$ km/s)

3) Calculer l'angle limite de réfraction λ caractérisant une surface séparant l'air et le diamant.

EXERCICE 3 (5 points)

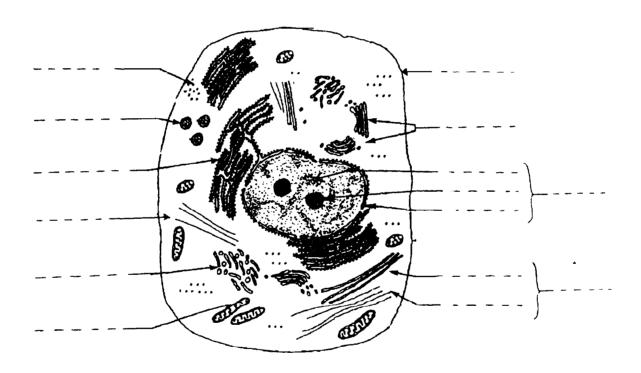
Les interrupteurs du circuit représenté sur le schéma ci-dessous peuvent prendre deux positions : A ou B.

1) Compléter le tableau ci-dessous en indiquant, pour chaque cas, si la lampe s'allume (oui) ou pas (non)

	INTERRUPTEUR N°1	INTERRUPTEUR N°2	LAMPÊ
CAS N°1	A	A	
CAS N°2	A	В	
CAS N°3	В	A	
CAS N°4	В	В	

- 2) Sur la lampe, on peut lire les indications : 6 V ; 6 W.
 - a) . Calculer la valeur de l'intensité du courant électrique qui la traverse lorsqu'elle est alimentée sous sa tension nominale.

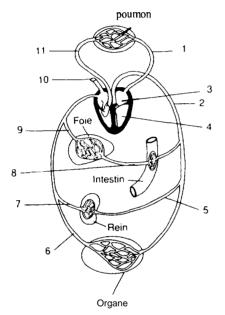
CAP EMPLOYE TECHNIQUE DE LABORATOIRE	SUJET	SESSION 2000	EPREUVE /~ SCIENCES APPLIQUEES	Page 10/ 15
--------------------------------------	-------	--------------	--------------------------------	-------------


						
NE RIEN ECRIRE DANS CE CADRE						
b) Calculer la valeur de la résistance électrique de cette lampe en régime normal.						
b) Calculer la valeur de la resistance electrique de cette fampe en regime normal.						
EXERCICE 4 (3 points)						
Cocher les cases correspondant aux réponses exactes :						
1) La pression de l'air à l'intérieur de la cabine d'un avion doit toujours être égale à la pression de l'air à l'extérieur, au niveau du sol. Par conséquent, la pression de l'air à l'intérieur de la cabine, en altitude est :						
supérieure						
égale						
inférieure						
à la pression de l'air à l'extérieur.						
2) On introduit de la glace fondante à l'intérieur d'un calorimètre contenant de l'eau à 20°C.Le calorimètre :						
cède de la chaleur						
reçoit de la chaleur						
n'intervient pas dans les échanges de chaleur.						
3) Lorsque l'intensité du courant débité par une pile augmente, la tension aux bornes de cette pile :						
ne change pas						
diminue						
c 1 augmente.						

PARTIE BIOLOGIE

I-CYTOLOGIE (8 points)

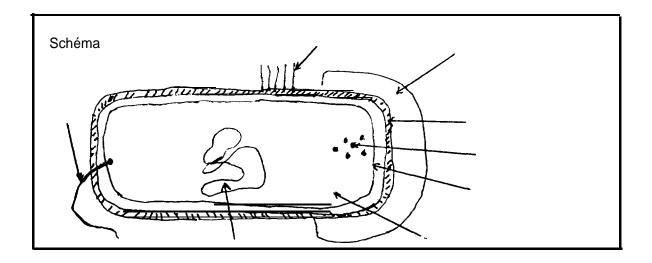
1-1 Légender le schéma (7 noms sont exigés). Lui donner un titre précis.


<u>TITRE :</u>.....

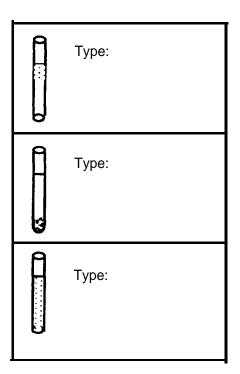
- 1-2 Citer l'organite (ou les organites) :
 - qui dirige(nt) les activités de la cellule
 - qui Participe(nt) à la synthèse des protéines
 - qui assure(nt) le respiration cellulaire
- 1-3 La membrane cytoplasmique règle les échanges de substances entre le milieu extérieur et le milieu intracellulaire. Préciser les 3 composés chimiques qui la constituent.

II - LA CIRCULATION (8 points)

2-1 Légender le schéma sur la circulation générale.


1	2
3	4
5	6
7	8
9	10
11	

2-2 Indiquer la présence de sang oxygéné en rouge et celle de sang chargé en dioxyde de carbone en bleu sur le schéma.


2-3 Cet appareil fait partie de la fonction de nutrition, énumérer les autres appareils correspondant à cette fonction.

III - LES BACTÉRIES (5,5 points)

3-1 Légender le schéma d'une bactérie vue au microscope électronique.

3-2 Trois tubes de géloses VF (viande - foie) sont ensemencés et étuvés 24 h à 37°C. Les résultats sont représentés ci-dessous. Préciser les 3 types respiratoires.

<u>IV - VACCINS - SÉRUMS (</u>3,5 points)

D'après vous connaissances, remplir le tableau ci dessous :

	Vaccin	Sérum
Composition		
S'agit-il d'une immunité active ou passive		
Temps de réponse		
Temps d'action		
L'action est-elle préventive ou curative		