		Académie :				Session:	
덦	L.	Examen:				Série :	-
DR.		Spécialité/op				Repère de l'épreuve :	-
DANS CE CADRE		Épreuve/sous	ép	reuve :			
E S	[]	NOM					
<u>S</u>		(en majuscule, suivi	s'il y	a lieu, di	u nom d'épouse)		
AN		Prénoms :				n° du candidat :	
]	Né(e) le :				(le numéro est celui qui figure sur la convocation	n ou liste d'appel)
NE RIEN ECRIRE						•••••••••••••••••••••••••••••••••••••••	
			Γ		NOTATION /	EP3	
			les				
Partie 1	>	Q.C.M.		:		/7	
Partie 2	>	Problème		: _		/ 13	
		TOTAL	:			/20	

<u>Partie 3</u> > Expérimentation :

Note BEP	/ 30	X ⁴ / ₃	=	/40
Note CAP	/ 24	X ⁵ / ₆	=	/20

TOTAL BEP: / 60

TOTAL CAP: / 40

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 11	Session 2000
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 1 / 11

QUESTIONNAIRE A CHOIX MULTIPLE

<u>DOMAINE</u>: SO4 - Circuits parcourus par un courant alternatif sinusoïdal monophasé; SO5 - Dipôles.

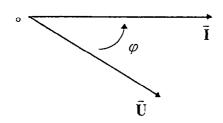
Vous devez retrouver la réponse ou les réponses en fonction de la question posée qui correspondent à la ou les bonnes solutions. Répondre par une croix dans le carré prévu à cet effet en face de celle-ci.

Attention: pas de crayon, pas de rature.

Question: n°1

BARÈME

- Quel est le diagramme de Fresnel correspondant au circuit R.L. suivant :
 - * Schéma: R $\mathbf{U}_{\mathbf{R}}$ \mathbf{U}_{L} U * Graphiques: Ū $\mathbf{\tilde{U}}_{\mathtt{R}}$ $ar{f U}_{
 m L}$ $\mathbf{\hat{U}}_{\mathrm{L}}$ Ī $ar{\mathbf{U}}_{\mathtt{p}}$ $\bar{\mathbf{U}}$ $ar{\mathbf{U}}$ $\boldsymbol{\bar{U}}_L$ Ī Ī Ū (4) (2)/1


Question: n°2

• La valeur: minimale.

- Soit un réseau d'alimentation monophasé 230 V/50 Hz, la valeur indiquée pour la tension est :
 - La valeur moyenne; • La valeur crête à crête;
 - La valeur efficace;
- BEP/CAP ÉLECTROTECHNIQUE 51 25502 / 50 25508 SUJET Nº 11 Session 2000 EP 3: EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE Durée: 4 H 00 Coef.: 3 ou 2 Page 2 / 11

Λ.,	estion		203
1 / 11	estion	•	ר.יח

• Sur le graphique donné, on dit que la tension est :

- En opposition de phase sur l'intensité;
- En quadrature arrière sur l'intensité;
- En phase avec l'intensité;
- En retard sur l'intensité.

Question: n°4

• Dans le triangle des impédances, par quelle méthode calculez-vous l'impédance d'un circuit R.L.?

- De Boucherot ;
 - Du théorème de Thalès
 - Du théorème de Pythagore ;
 Des groupements des dipôles ohmiques en série.

Question: n°5

• Le compteur d'énergie électrique mesure :

- L'énergie réactive en wattheure ;
 - L'énergie apparente en wattheure ;
 - Le coefficient de puissance de l'installation en wattheure;
 - L'énergie active en wattheure.

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 11	Session 2000
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 3 / 11

Question: n°6			
• Si l'on désire améliorer le facteur de puissance d'une installation, il faut :			
• Mettre une pince ampèremètrique dans le réseau;			
• Augmenter la capacité du compteur d'énergie ;			
• Placer un condensateur en parallèle dans l'installation;			
• Remplacer le compteur d'énergie de l'utilisateur.		Ч	/1
Question: n°7			
• La tension produite par le réseau E.D.F. est un signal :			
 Unidirectionnel périodique de pulsation 50π rad/s; 			
• Variable, mais de valeur constante d'une fréquence 50 Hz;			
• Bidirectionnel, périodique et de fréquence 60 Hz;			
• Sinusoïdal, dont la valeur moyenne est nulle et de pulsation 100π ra	ad/s.		/1
	Total:		
			/ 7

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 11	Session 2000
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 4 / 11

APPLICATION NUMERIQUE

Relative au domaine S05 : Les dipôles

Une tension monophasée 230 V / 50 Hz est appliquée à un circuit comportant en série un condensateur de 12 μ F et une bobine dont la résistance est de 180 Ω et l'inductance de 0,5 H.

Première partie

(Répondre aux questions dans l'ordre)	BAREME
1°- Donner le schéma électrique complet ;	1
2° - Calculer la réactance de l'inductance de la bobine ;	0,5
3°- Calculer la réactance de la capacité ;	0,5
4° - Calculer l'impédance de la bobine ;	1,5
5°- Calculer l'impédance de l'ensemble du circuit ;	1,5
6°- Calculer le déphasage entre le courant et la tension aux bornes de la bobine ;	1,5
7° - Calculer le déphasage entre le courant et la tension aux bornes du circuit ;	1,5
8° - Définir la dominance de ce circuit : Résistif, Inductif ou Capacitif.	0,5

Deuxième partie

Les tensions mesurées aux bornes des dipôles sont les suivantes :

 $U_B = 263 \text{ V}; U_C = 291 \text{ V}$

1°- Construire le graphique de Fresnel à l'échelle {U = 20 V/cm},	
déterminer graphiquement les tensions fictives U _R et U _L .	3
2° - Calculer l'intensité du courant traversant ce circuit ;	0,5
3°- Calculer la puissance dissipée par effet joule dans l'ensemble.	1

TOTAL: / 13

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 11	Session 2000
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 5 / 11

Thème d'expérimentation EP3

Moteur asynchrone triphasé à cage :SO 9.

Mise en situation:

Une usine de fabrication de tubes en carton désire améliorer le facteur de puissance de son unité de production (facturation d'énergie réactive trop importante).

Cette amélioration passe par une phase de mesurage du $\cos \phi$ des différents équipements sur le site.

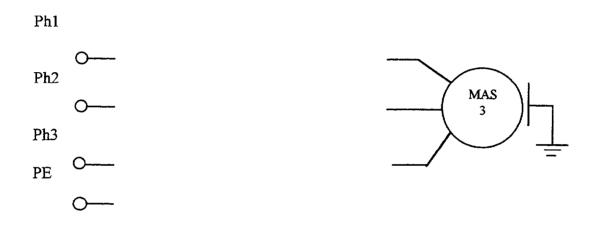
Un de ces équipements est constitué d'un moteur asynchrone triphasé à cage qui entraîne en rotation un bras malaxeur situé dans une cuve contenant de la colle.

Travail à faire sur ce moteur :

A) RELEVER LE FACTEUR DE PUISSANCE	
	•
1) Identifier la plaque signalétique du moteur.	

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 11	Session 2000
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 6 / 11

2) Coupler le moteur en fonction du réseau disponible.


Réseau:		Couplage:
Moteur:		Couplage:
	U1 V1 W1 O O O	
Tracer le couplage sur la plaque à bornes :	O O O W2 U2 V2	

3) Compléter le tableau de mesures ci dessous (colonne intitulée Pu calculée)

Charge.	Pu calculée (W)	U réseau (V).	I absorbé (A)	P.absorbée au réseau mesurée à la pince	cos φ mesuré à la pince	Pu (W) mesurée
0						
1/4						
1/2						
3/4						
Pu nominale						
5/4						

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 11	Session 2000
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 7 / 11

4) Compléter le schéma de câblage (la charge du moteur est câblée par le centre d'examen).

5) Câbler d'après votre schéma.

▲ Faire vérifier le câblage par l'examinateur.

6) Mesurer les différentes grandeurs pour Pu variant de 0 à 5/4 de Pu nominale et compléter le tableau paragraphe 3).

▲ Appeler l'examinateur pour la mise hors tension.

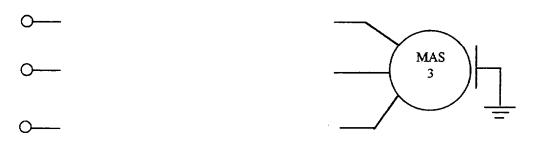
7) Tracer la caractéristique cos $\varphi = f(Pu)$ sur papier millimétré.

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 11	Session 2000
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 8 / 11

B) CALCULER LA CAPACITÉ DES CONDENSATEURS

Le moteur fonctionne à 70 % de sa puissance nominale.(lire la valeur de $\cos \varphi$ et de Pu sur la caractéristique tracée).

La norme EDF impose que $\cos \varphi = 0.928$.


Le cos φ lu sur la caractéristique est-il correct par rapport à la valeur imposée par EDF?

1) Calculer la valeur globale de la capacité à raccorder au moteur si le couplage des condensateurs se fait en triangle.

Relation:
$$C = P.(\tan \varphi 1 - \tan \varphi 2)$$

C tota	ale =		

- 2) Calculer la capacité d'un des trois condensateurs que vous allez raccorder.
- 3) Placer les condensateurs, couplés en triangle, sur votre schéma.

BEP/CAP ÉLECTROTECHNIQUE	51 35502 / 50 25508	SUJET Nº 11	Session 2000
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	. : rée : 4 H 00	Coef. : 3 ou 2	Page 9 / 11

C) CONTRÔLER LE FACTEUR DE PUISSANCE APRÈS COMPENSATION.
1) Raccorder les condensateurs sur votre câblage.
▲ Faire vérifier le câblage par l'examinateur.
2) Mesurer le cos φ pour Pu = 70 % de Pu nominale.
$\cos \varphi =$
3) Comparer le cos φ avant et après amélioration.

50% de la note : déroulement du TP. 50% de la note : compte rendu.

Barème	BEP	CAP
	Partie A	
question 1	/2	/2
question 2	/2	/2
question 3	/2	/2
question 4	/3	/2
question 5	/3	/3
question 6	/ 4	/3
question 7	/ 2	/1
total	/18	715
	Etape B	
question 1	/1	/ 1
question 2	/1	/ 1
question 3	/ 2	/1
total	/4	/3
	Etape C	÷
question 1	/3	/ 2
question 2	/3	/ 2
question 3	/2	/2
total	/8	76
	/ 30	/ 24
TOTAL		

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 11	Session 2000
EP 3: EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 11 / 11