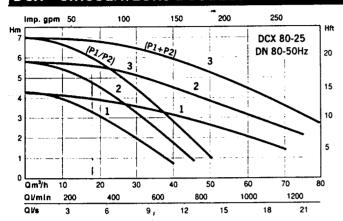
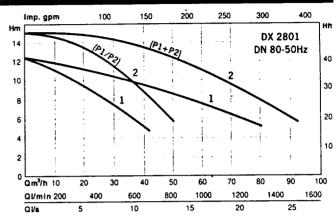
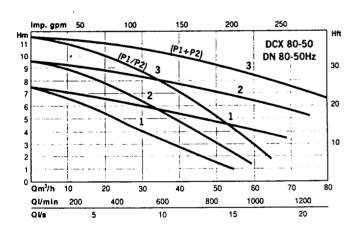
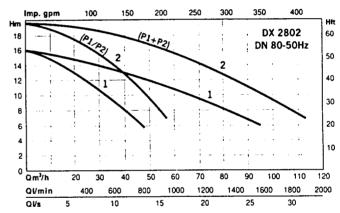
BACCALAUREAT PROFESSIONNEL ENERGETIQUE SESSION 2001 E.1-EPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve. A 1 : Etude scientifique et technique d'un ouvrage

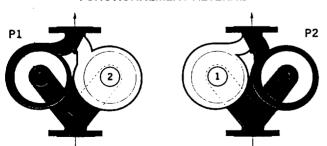

Unité U.11


Option B: Gestion et maintenance des systèmes énergétiques


ANNEXE 3

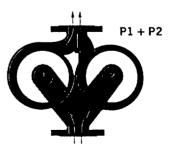

4 Documents

DCX - CIRCULATEURS DOUBLES - 2 POLES - TRIPHASE 50 Hz



NOTA: Les courbes hydrauliques ci-dessus et celles de la page précédente, donnent les caractéristiques hydrauliques d'une pompe en fonctionnement (P1 ou P2) et des 2 pompes en parallèle (P1 + P2).

FONCTIONNEMENT ALTERNE

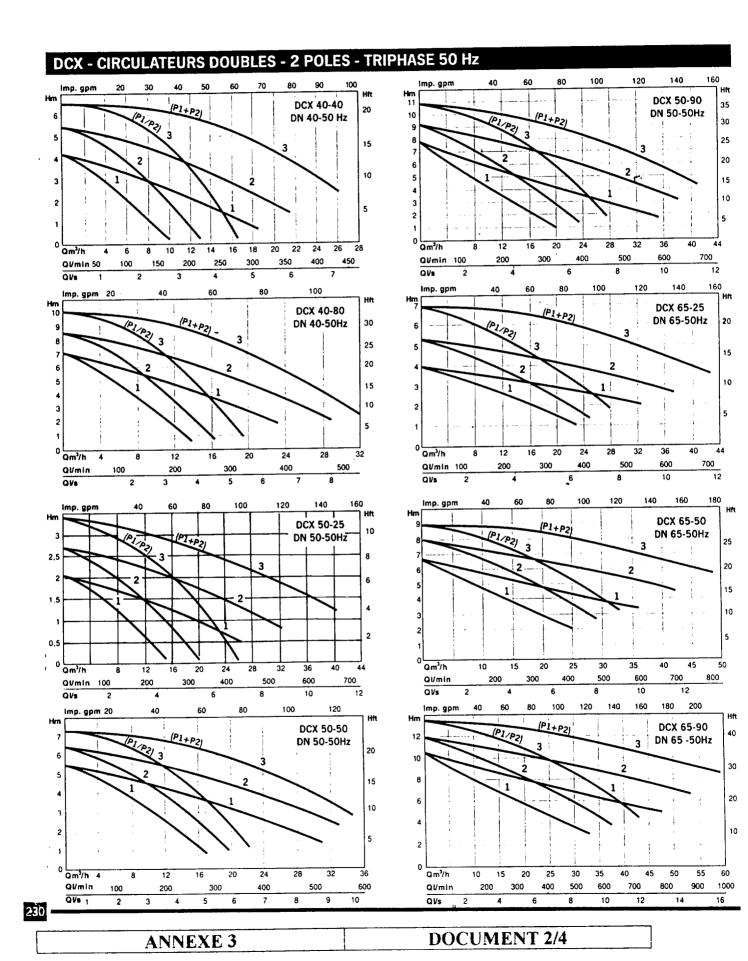


POMPE 1 OU POMPE 2 EN MARCHE

UNE POMPE EN SECOURS ASSURANT UNE SECURITE DÉ FONCTIONNEMENT SANS ARRÊT DE L'INSTALLATION

Permutation et programmation du fonctionnement des pompes par coffret de commande

FONCTIONNEMENT EN PARALLÈLE



Le fonctionnement en parallèle des 2 pompes pour le débit demandé, permet une économie substantielle aussi bien à l'achat qu'à l'exploitation. Une seule pompe en marche assure environ 85% des performances requises par l'installation pendant la saison de chauffe.

Les performances hydrauliques maximales requises étant fournies par le fonctionnement en parallèle des deux pompes. Le coffret de commande assure la programmation.

231

0106-ENE B STA

This graph shows the pressure drop over the pressure test points of the valve.

A straight line connecting the bars for flow rate, Kv and pressure drop shows the relationship between these variables

Example:

Wanted: Presetting for DN 25 at a desired flow rate of 1,6 m³/h and a pressure drop of 10 kPa.

Solution:

Draw a straight line joining 1,6 m^3/h and 10 kPa. This gives Kv = 5. Now draw a horizontal line from Kv = 5. This intersects the bar for DN 25 at the desired presetting of 2,4 turns.

NOTE:

If the flow rate falls outside of the scale in the diagram, the reading can be made as follows: Starting with the example above, we get 10 kPa, Kv = 5 and flow-rate 1.6 m³/h. At 10 kPa and Kv = 0.5 we get the flow-rate 0.16 m³/h, and at 50, we get 16 m³/h. That is, for a given pressure drop, it is possible to read 0.1 times or 10 times the flow and Kv-values.

DIAGRAMM

Dieses Diagramm zeigt den Druckverlust über die Meßnippel des Ventils.

Eine gerade Linie, welche die Skalen für Durchfluß - Kv -Druckabfall verbindet, dient als Zusammenhang zwischen den verschiedenen Werten.

Beispiel:

Voreinstellung für DN 25 bei gewünschtem Durchfluß 1,6 m³/h und Druckabfall 10 kPa.

Lösung:

Eine Linie zwischen 1,6 m³/h und 10 kPa ziehen. Dies ergibt einen Kv-Wert von 5. Danach eine waagrechte Linie vom Kv zur Skala für DN 25 ziehen = 2,4 Umdrehungen.

ACHTUNG:

Wenn der Durchflußwert außerhalb des Diagramms zu liegen kommt, kann die Ablesung folgenderweise erfolgen: Wenn man von oben angegebenem Beispiel ausgeht, das 10 kPa, Kv = 5 und Durchfluß 1,6 m³/h liefert, erhält man bei 10 kPa und Kv = 0,5 einen Durchfluß von 0,16 m³/h, und bei Kv = 50 einen Durchfluß von 16 m³/h. Für jeden vorgegebenen Druckabfall kann somit der Durchfluß und der Kv-Wert als x 0,1 oder x 10 abgelesen werden.

ABAQUE

Une ligne droite reliant les échelles débits, Kv et pertes de charge, permet d'obtenir la correspondance entre les différentes données.

Détermination de la position de réglage en fonction d'un débit et d'une perte de charge donnés.

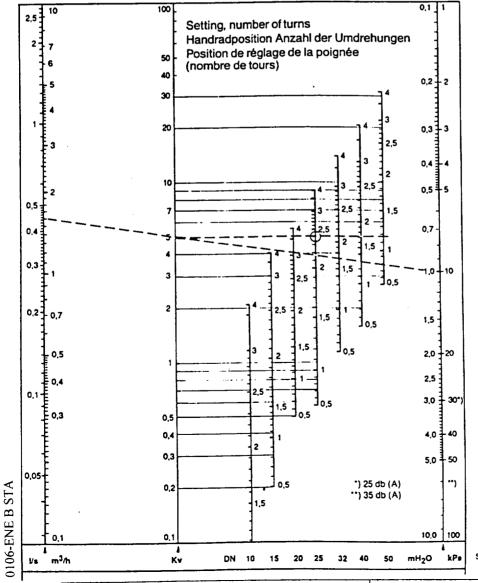
Exemple:

Diamètre de la vanne: soit DN 25 Débit: 1,6 m³/h Perte de charge: 10 kPa

Solution

Tracer une ligne entre 1,6 m³/h et 10 kPa pour obtenir un Kv de 5. Tracer ensuite une ligne horizontale partant de ce Kv jusqu'à l'échelle correspondant à la vanne de DN 25, ce qui donne 2,4 tours.

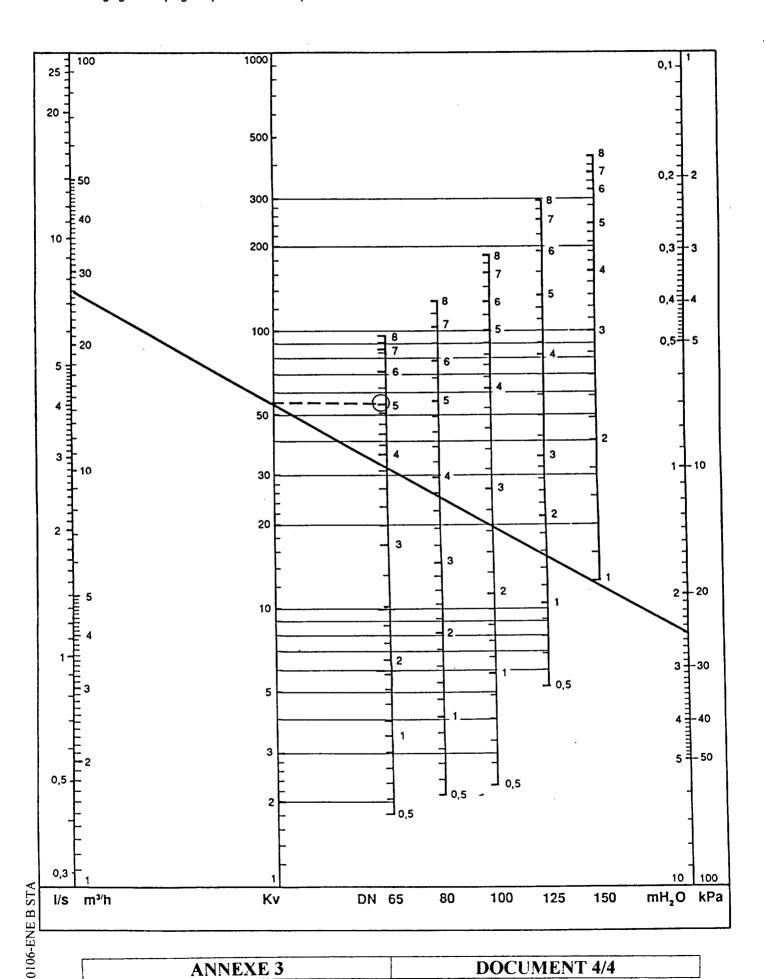
N.B.


Lorsque le débit aboutit en denors de l'abaque ci-dessous, procéder de la manière suivante:

Soit l'exemple ci-dessous: une perte de charge de 10 kPa, un Kv de 5 et un débit de 1,6 m³/h.

Pour 10 kPa et un Kv de 0,5 on aura un débit de 0,16 m³/h.

Pour 10 kPa et un Kv de 50 on aura un débit de 16 m³/h.


Par conséquent, pour toute perte de charge donnée, on pourra lire soit 0,1 fois, soit 10 fois le débit et le coefficient Kv.

STA-D 52 171

Diagram/Diagramm/Abaque DN 65-150

Setting, number of turns Handradposition Anzahl der Umdrehungen Position de réglage de la poignée (nombre de tours)

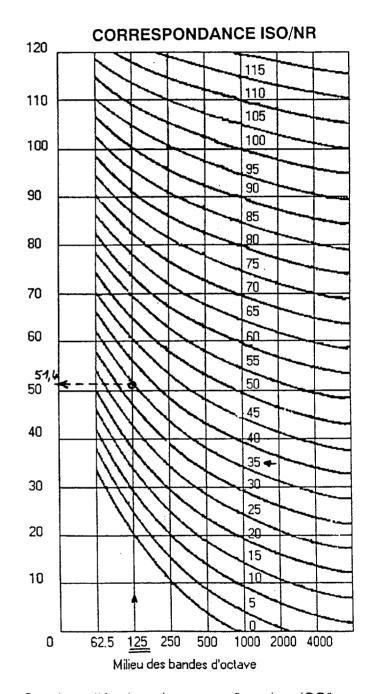
BACCALAUREAT PROFESSIONNEL ENERGETIQUE SESSION 2001 E.1-EPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve. A 1 : Etude scientifique et technique d'un ouvrage

Unité U.11

Option B : Gestion et maintenance des systèmes énergétiques

ANNEXE 4


4 Documents

Le tableau ci – dessous donne les résultats de la campagne de mesures acoustiques effectuées dans le local le plus bruyant pour les trois bandes de fréquences les plus défavorables.

FREQUENCE (Hz)	125	250	500
PRESSION	62,9	56,9	50,9
ACOUSTIQUE (dB)			

ANNEXE 4	DOCUMENT	1/4
1 43 (3 (23 223)	<u> </u>	

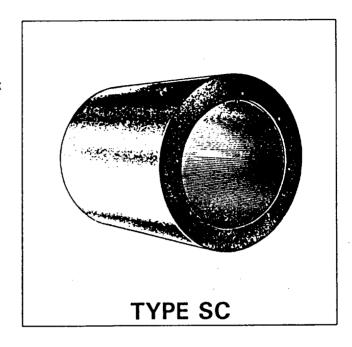
Valeurs maximales recommand (sans caractères réglen	
Types de locaux	Valeur NR
Studio de radio, TV	NR 20
Théâtre, salle de concert, opéra	NR 20/25
Salle de conférences	NR 25
Cinéma	NR 30
Chambre d'hôtel	NR 25/30
Restaurant	NR 35/40
Cuisine	NR 40/50
Cantine, cafétéria	NR 40
Night club	NR 40
Blanchisserie	NR 45
→ Magasins et boutiques	NR 35
Supermarché, grand magasin	NR 40
Hôpital	
-chambre	NR 25
-laboratoire	NR 35/40
-bloc opératoire	NR 30/35
-salle d'attente	NR 35/40
Salle de réunion	NR 25/35
Bureau privé	NR 30/35
Bureau paysager	NR 35
Locaux d'informatique	NR 40
Salle dactylographique	NR 45/50
Bibliothèque, Musée	NR 30/35
Banque et bureau de poste	NR 40
Salle de classe	NR 25/30
Eglise	NR 25/30
Laboratoire	NR 40/45
Atelier de garage	NR 45/50
Atelier de mécanique	NR 45/50
Salle de sport, piscine	NR 45/50

EXEMPLE DE LECTURE DE L'ABAQUE:

-type de locaux: magasins et boutiques.

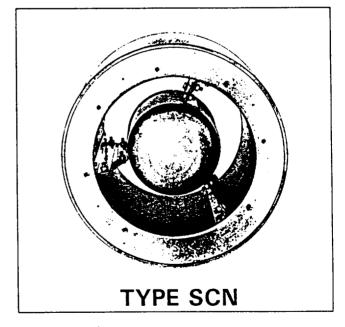
-fréquence : 125 Hz.

-indice NR pour ces locaux : NR 35


-pression acoustique maximale admise: 51,4 dB

Courbes d'égale nuisance ou "courbes ISO"

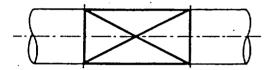
ANNEXE 4	DOCUMENT 2/4


UTILISATION

- Silencieux du type dissipatif
- Traitement du niveau sonore dans les réseaux de ventilation et de climatisation

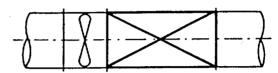
DESCRIPTION

- Enveloppe en acier galvanisé
- Brides avec écrous sertis pour le raccordement direct sur la virole des ventilateurs. (La position des écrous correspond aux côtes de perçage des ventilateurs axiaux FRANCE-AIR)
- Sur les modèles SCN un noyau central profilé, concentrique à la couronne extérieure, permet, une meilleure atténuation tout en conservant de bonnes performances aérauliques.
- Pour chaque diamètre, trois longueurs sont disponibles :
 - Une fois le diamètre.....: SC/SCN 10
 Une fois et demi le diamètre : SC/SCN 15
 Deux fois le diamètre.....: SC/SCN 20



ATTENUATION ACOUSTIQUE

L'atténuation acoustique varie selon la position de l'ATTENUATEUR et du VENTILATEUR :


ATTENUATEUR cylindrique éloigné du ventilateur et raccordé à celui-ci par des gaines circulaire. ATTENUATEUR cylindrique raccordé directement à l'aspiration ou au soufflage du ventilateur axial.

ATTENUATION STATIQUE dB

Atténuateur inséré en gaine

ATTENUATION DYNAMIQUE dB

Atténuateur raccordé directement au ventilateur

		BANDES DE FREQUENCES (Hz												
Diamètre mm	TYPE	63	125	250	200	1000	2000	4000	8000					
250*	SC 10	0	1	2	4	9	9	7	7					
300	SC 15	0	1	3	6	10	10	9	8					
300	SC 20	0	2	4	8	13	13	11	10					
400	SCN 10	1	5	8	16	20	18	13	12					
400.	SCN 15	2	6	11	20	24	22	16	16					
500	SCN 20	4	8	16	25	32	29	20	18					
600	SC 10	0	1	3	7	9	8	5	4					
000	SC 15	0	1	3	8	11	10	7	6					
700	SC 20	0	2	4	11	13	12	10	9					
700	SCN 10	2	6	10	18	22	21	15	13					
800	SCN 15	3	8	15	25	30	28	19	15					
800	SCN 20	5	11	21	34	40	36	23	18					
	SC 10	0	2	5	8	7	6	4	3					
1000	SC 15	0	3	7	10	9	7	5	4					
1 ,300	SC 20	1	4	9	13	12	8	6	5					
1250	SCN 10	3	6	13	21	24	16	11	10					
1250	SCN 15	4	9	18	30	34	24	15	12					
	SCN 20	5	12	24	39	45	33	19	14					

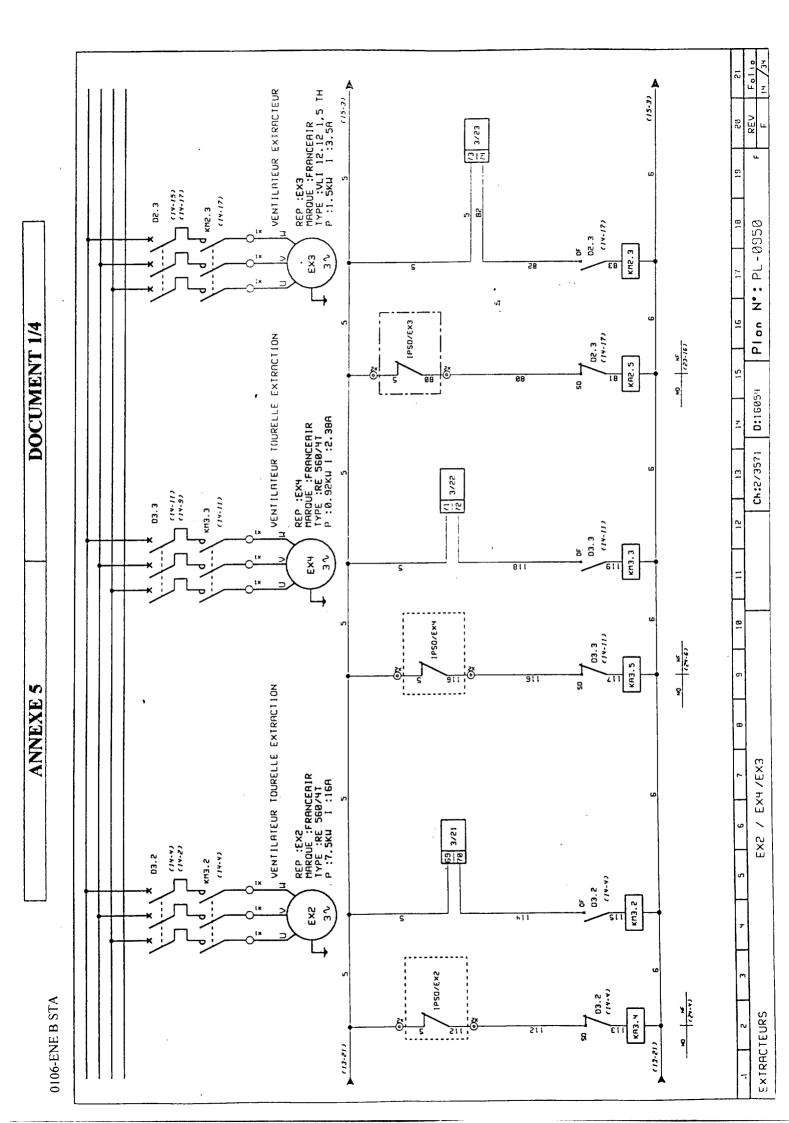
		BANDES DE FREQUENCES (Hz)												
Diamètre - mm	TYPE	63	125	250	200	1000	2000	4000	8000					
250*	SC 10	2	4	6	10	14	10	7	8					
300	SC 15	3	5	8	13	17	13	10	10					
300	SC 20	4	7	11	17	21	17	13	12					
400	SCN 10	4	6	8	12	18	18	16	14					
400	SCN 15	5	8	11	16	23	23	21	18					
500	SCN 20	7	10	15	21	28	28	26	22					
600	SC 10	3	4	8	14	14	9	8	7					
600	SC 15	4	6	10	18	18	11	10	7					
700	SC 20	6	8	13	22	22	14	13	9					
/00	SCN 10	4	6	9	17	23	20	18	11					
800	SCN 15	6	8	12	22	27	26	23	15					
800	SCN 20	8	11	16	27	32	32	29	19					
	SC 10	3	4	9	14	12	8	7	7					
1000	SC 15	4	6	11	17	15	10	9	8					
1000	SC 20	6	8	13	21	19	12	11	10					
1200	SCN 10	4	6	11	20	19	15	13	11					
1200	SCN 15	6	8	15	23	23	20	17	14					
	SCN 20	8	11	19	26	27	26	22	17					

Les tableaux ci-dessus donnent les valeurs d'atténuation acoustique en dB pour chaque type d'atténuateur et pour chaque fréquence.

Ces valeurs d'atténuation sont à déduire de la valeur mesurée au sonomètre pour obtenir le niveau de pression acoustique résultant, ceci pour chaque fréquence.

^{*}EXISTE UNIQUEMENT EN MODELE SC

BACCALAUREAT PROFESSIONNEL ENERGETIQUE SESSION 2001 E.1-EPREUVE SCIENTIFIQUE ET TECHNIQUE


Sous-épreuve. A 1 : Etude scientifique et technique d'un ouvrage

Unité U.11

Option B: Gestion et maintenance des systèmes énergétiques

ANNEXE 5

4 Documents

Contacteurs

Types LC1-D et LP1-D pour commande de moteurs De 9 à 95 A, tripolaires Circuit de commande en courant alternatif

Encombrements: pages 1/80 à 1/83 Schémas : pages 1/84 et 1/85

Références

LC1-D2510ee

	sance					Courant		tacts	Référence de base		Masse
	moteu					assigne		liaires	à compléter par le	(0)	
50/0	0 Hz €	en cat	egorie	AU-3		d'emploi	insta	intanés	repère de la tensio	n (2)	
						en AC-3	1		Fixation,		
ว่ากา	V 380				660V	440V	\'	ን	raccordement (1)	Tensions	
			V 440	V SOO	V 690V	jusqu'à	1			usuelles	
kW	kW	kW	kW	kW	kW	A	- !			usuelles	kg
2,2	4	4	4	5,5	5,5	9	=	-	LC1-D09000 (3)	B7 E7 F7 M7 Q7	0,320
							1	-	LC1-D0910●●	B7 E7 F7 M7 Q7	0,320
							_	1	LC1-D0901 •	B7 E7 F7 M7 Q7	0,320
3	5.5	5,5	5,5	7,5	7.5	12			LC1-D1200	B7 E7 F7 M7 Q7	0,320
J	0,5	5,5	5,5	7,5	7,3	12					
							1		LC1-D1210●●	B7 E7 F7 M7 Q7	0,320
								1	LC1-D1201●●	B7 E7 F7 M7 Q7	0,320
4	7,5	9	9	10	10	18	-	-	LC1-D1800ee (3)	B7 E7 F7 M7 Q7	0,320
							1	_	LC1-D1810 •	B7 E7 F7 M7 Q7	0,350
								1	LC1-D1801 • •	B7 E7 F7 M7 Q7	0,350
5,5	11	11	11	15	15	25	_	_	LC1-D2500ee (3)	B7 E7 F7 M7 Q7	0,320
							-		LO4 D0540	D7 67 67 147 07	
							1		LC1-D2510●●	B7 E7 F7 M7 Q7	0,505
					•	"		1	LC1-D2501●●	B7 E7 F7 M7 Q7	0,505
7,5	15	15	15	18,5	18,5	32		_	LC1-D3200●● (3)	B7 E7 F7 M7 Q7	0,320
							1	-	LC1-D3210●●	B7 E7 F7 M7 Q7	0,525
								1	LC1-D3201 • •	B7 E7 F7 M7 Q7	0,525
11	18,5	22	22	22	30	40	1	1	LC1-D4011.	B5 E5 F5 M5 Q5	1,150
15	22	25	30	30	33	50	1	1	LC1-D5011 • •	B5 E5 F5 M5 Q5	1,150
18,5	30	37	37	37	37	65	1	1	LC1-D6511●●	B5 E5 F5 M5 Q5	1,150
22	37	45	45	55	45	80	1	1	LC1-D8011.	B5 E5 F5 M5 Q5	1,500
25	45	45	45	_55_	45	95	1	1	LC1-D9511 • •	B5 E5 F5 M5 Q5	1,500
									•		

Nota: blocs de contacts auxiliaires et modules: voir pages 1/46 à 1/57.

(1) Pour LC1-D09 à D32 : par encliquetage sur profilé __ r de 35 mm AM1-DP.

Pour LC1-D40 à D95 : par encliquetage sur profilé __ r de 35 mm ou 75 mm AM1-DL.

Bornes puissance : LC1-D09 à D95 protégées contre le toucher et vis maintenues desserrées.

(2) Tensions	au circun	t de cor	nmanae	e exista	ntes (delai	variab	e, cons	ulter notre	agenc	e régio	nale).		
Volts	24	42	48	110	220/230	230	240	380/400	400	415	440	500	660
50 Hz	B 5	D5	E5	F5	M5	P5	U5	Q5	V5	N5	R5	S5	Y5
60 Hz	B6	D6	E6	F6	M6	_	U6	Q6	_	_	R6	_	_
50/60 Hz	B7	D7	E7	F7	M7	P7	U7	Q7	V7	N7	R7		_
A		04 -4 0	^^ \										

Autres tensions entre 24 et 660 V, consulter notre agence régionale.
(3) Contacteurs tripolaires sans contact auxiliaire (norme EN 50012).

Encombrements: pages 1/150 et 1/151 Schémas : page 1/153

Disjoncteurs magnéto-thermiques GV2-M

Puissa des m 50/60 220	nande pa ances no oteurs tr Hz en ca 400	rmalisé iphasés atégorie	es AC-3		Plage de réglage des déclencheurs thermiques	Courant de déclenchement magnétique Id ± 20 %	Courant Ithe en coffret GV2-M•••	Référence	Masse
230 V kW	415 V kW	440 V kW	500 V kW	690 V k₩	Α	A	Α		kg
-	-	-		-	0,10,16	1,5		GV2-M01	0,260
	0,06	0,06	-	_	0,160,25	2,4	0,25 ₺	GV2-M02	0,260
0,06	0,09	0,09 0,12	_	_	0,250,40	5	0,40 ₺	GV2-M03	0,260
_	0,12 0,18	0,18	-	0,37	0,400,63	8	0,63 L	GV2-M04	0,260
0,09 0,12	0,25 0,37	0,25 0,37	0,37	0,55	0,631	13	1 🕸	GV2-M05	0,260
0,18 0,25	0,37 0,55	0,37 0,55	0,37 0,55 0,75	0,75 1,1	11,6	22,5	1,6 ₺	GV2-M06	0,260
0,37	0,75	0,75 1,1	1,1	1,5	1,62,5	33,5	2,5 🛣	GV2-M07	0,260
0,55 0,75	1,1 1,5	1,5	1,5 2,2	2,2 3	2,54	51	4 ₺	GV2-M08	0,260
1,1	2,2	2,2 3	3	4	46,3	78	6,3 ₺	GV2-M10	0,260
1,5 2,2	3 4	4	4 5,5	5,5 7,5	610	138	9 %	GV2-M14	0,260
2,2	5,5	5,5 7,5	7,5	9 11	914	170	13 ₺	GV2-M16	0.260
4	7,5	7,5 9	9	15	1318	223	17 戊	GV2-M20	0.260
5,5	9 11	11	11	18,5	1723	327	21 🛣	₹ GV2-M21	0.260
5,5	11	11	15	22	2025	327	23	GV2-M22	0.260

Disjoncteurs magnéto-thermiques GV2-M avec bloc de contacts intégré

Avec bloc de contacts auxiliaires instantanés :

- GV2-AE1, ajouter AE1TQ en fin de référence du disjoncteur choisie ci-dessus.

Exemple: GV2-M01AE1TQ.

- GV2-AE11, ajouter AE11TQ en fin de référence du disjoncteur choisie ci-dessus.

Exemple: GV2-M01AE11TQ.

- GV2-AN11, ajouter AN11TQ en fin de référence du disjoncteur choisie ci-dessus.

Exemple: GV2-M01AN11TQ.

Ces disjoncteurs magnéto-thermiques avec bloc de contacts intégré sont vendus par lot de 20 pièces sous emballage unique.

DESIGNATION HARMONISEE DES CABLES (CENELEC)

REPERE	SYMBOLE	SIGNIFICATION
Première lettre	Н	Câble harmonisé
	A	Type national reconnu
Deux chiffres	03	Tension 300 volts
	05	• Tension 500 volts
	07	• Tension 750 volts
	1	• Tension 1000 volts
Deuxième lettre	R	Enveloppe isolante en caoutchouc
	V	Enveloppe isolante en PVC
	X	Enveloppe isolante en polyéthylène réticulé
Troisième lettre	N	Gaine de protection en Polychloroprène
	R	Gaine de protection en Caoutchouc
	V	Gaine de protection en PVC
Quatrième lettre	Absence de lettre	Câble rond
Cinquième lettre	Absence de lettre	Câble en cuivre
	-A	Câble en aluminium
Sixième lettre	- F	Ame souple de classe 5
	-Н	Ame souple de classe 6
	-K	Ame souple, câble pour installation fixe
	-R	Ame rigide câblée, section circulaire
C-1555 F1-17	-U	Ame rigide massive, section circulaire
espace		
chiffre	1,2,3,4 ou 5	Nombre de conducteurs du câble
Sixième lettre	X	Pas de conducteur vert/jaune dans le câble
	G	Conducteur vert/jaune dans le câble
nombre	1, 1,5 , 2 , 2,5	Section des conducteurs en mm²

calculer la chute de tension en ligne en régime permanent

La chute de tension en ligne en régime permanent est à prendre en compte pour l'utilisation du récepteur dans des conditions normales (limites fixées par les constructeurs des récepteurs).

le tableau ci-dessous donne la chute de tension en % dans 100 m de câble, en 400 V/50 Hz triphasé, en fonction de la section du câble et du courant véhiculé (In du récepteur). Ces valeurs sont données pour un cos ϕ de 0,85 dans le cas

d'un moteur

Ce tableau peut être utilisé pour des longueurs de câble L ≠ 100 m : il suffit d'appliquer au résultat le coefficient L/100.

chute de tension dans	s 100 m de câble en	1 400 V/50 Hz triphasé (%)

$\cos \varphi = 0$,														alum	inium							
cáble	cuiv				امد	1	ا مد	25 1	50 l	70 I	95 I	120	150	10	16 I	25 I	35	50 l	70	95	120	150
S (mm²)	1,5	2,5	4	6	10	16	25	35	30	70	95	-120	130									
In (A)																						
1	0.5	0,4																				
2	1,1	0,6	0,4											24								
3	1,5	1	0,6	0,4										0,4	-0.4							
5	2,6	1,6	1	0,6	0.4			1						0,6	0,4	0.5						
10	5,2	3,2	2	1,4	0,8	0,5								1,3	0,8	0,5	0.5		l			
16	8,4	5	3,2	2.2	1.3	0,8	0,5							2,1	1,3	0,8	0,6	75		l		
20	1	6,3	4	2.6	1.6	1	0,6							2,5	1.6	1,1	0,7	0,5	25			
25	1	7.9	5	3,3	2	1.3	8,0	0,6						3,2	2	1,3	0,9	0,6	0,5	2.5	ļ	
32			6.3	4.2	2,6	1,6	1,1	8,0	0,5					4,1	2,6	1,6	1,2	0,9	0,6	0,5	1-05	
40	-		7,9	5,3	3,2	2,1	1,4	1	0,7	0,5				5,1	3,2	2,1	1,5	1,1	0.8	0,6	0,5	0.5
50	ļ	1		6.7	4,1	2,5	1,6	1,2	0,9	0.6	0,5			6,4	4,1	2,6	1,9	1,4	1 1	0,7	0,6	0,5
63	-}	 		8,4	5	3,2	2,1	1.5	1,1	0.8	0,6			8	5	3,2	2,3	1,7	1,3	0,9	0,8	0,6
70		-			5,6	3,5	2,3	1,7	1,3	0,9	0.7	0,5			5,6	3,6	2,6	1,9	1,4	1,1	0.8	0,7
80	 	i			6.4	4,1	2,6	1,9	1,4	1	8,0	0,6	0,5	1	6,4	4.1	3	2,2	1.5	1,2	1	0,8
100		 		1	8	5	3,3	2,4	1,7	1,3	1	0,8	0,7		l	5,2	3,8	2,7	2	1,5	1,3	1 1
125						4.4	4,1	3,1	2,2	1,6	1,3	1	0,9	Ī		6,5	4,7	3,3	2,4	1,9	1,5	1,3
160		-	 	1	 	 	5.3	3.9	2,8	2,1	1,6	1,4	1,1				6	4,3	3,2	2,4	2	1,6
200		 -		 	 	 	6.4	4.9	3,5	2,6	2	1,6	1,4			1	I	5,6	4	3_	2,4	2
250	-	-	 	+		 	1	6	4,3	3,2	2,5	2,1	1,7					6,8	5_	3,8	3,1	2.5
320	-	-	i	 		1	1	 	5,6	4,1	3,2	2,6	2,3						6.3	4,8	3,9	3,2
		 	 	+	 	1	 	l	6.9	5.1	4	3,3	2,8	1	1		1			5,9	4,9	4,1
500		 		 	 	· 	 		1 - 2 ! 2	6.5	5	4.1	3,5	1	1	1		1	1	1	6,1	5

0106-ENE B STA

ANNEXE 5 DOCUMENT 4/4