SESSION .2001

E. 1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve .A 1 : Étude scientifique et technique d'un ouvrage

Unité U.11

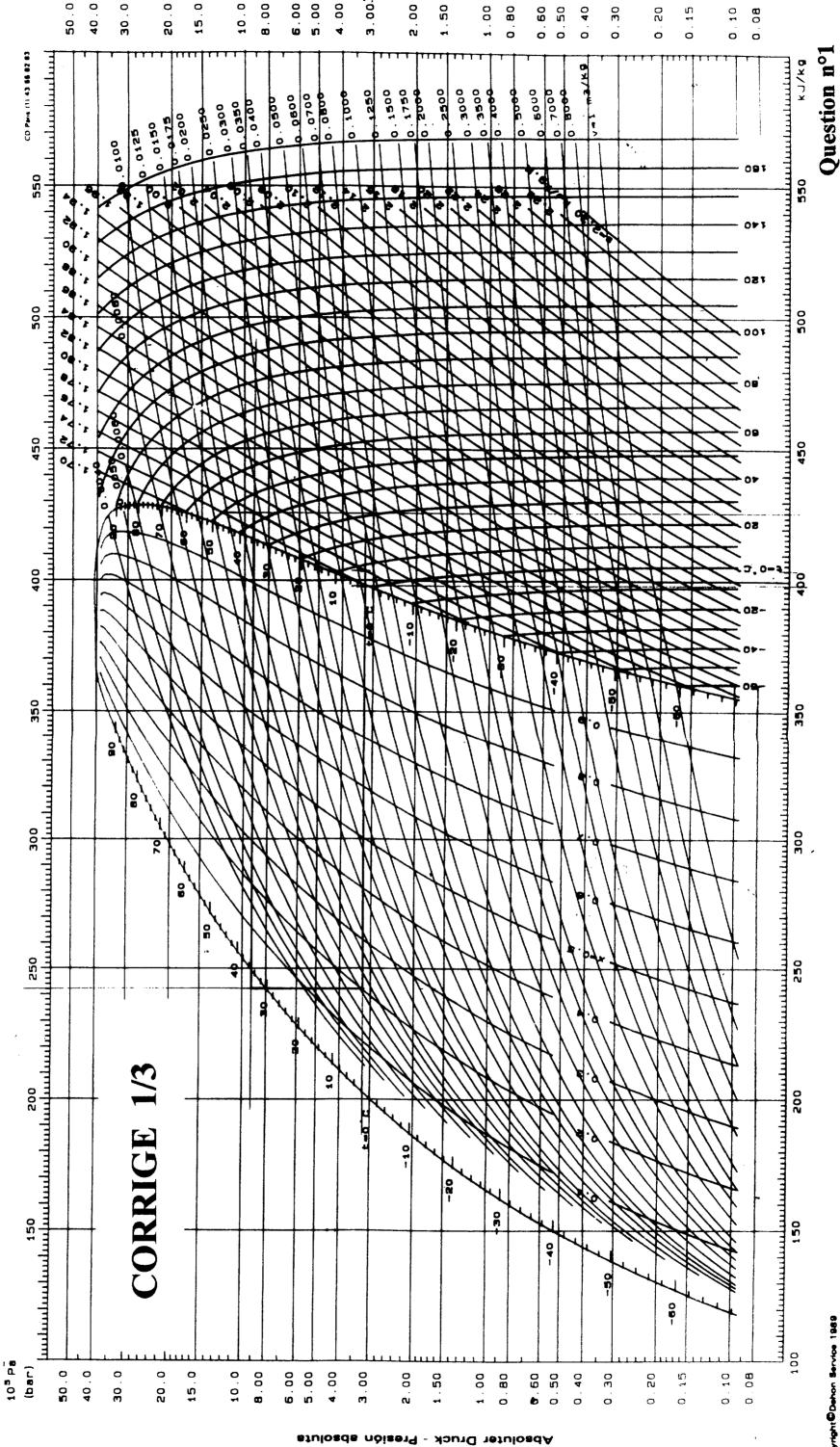
Option A : Installation et mise en oeuvre des systèmes énergétiques et climatiques
A1 (Domaine Froid et Climatisation)

Durée : 4 heures

Coefficient: 2

CORRIGE

Barème de correction


SI LA RÉPONSE NE CORRESPOND PAS AU RÉSULTAT ATTENDU ET QUE LA DÉMARCHE EST EXACTE, IL SERA ATTRIBUE AU CANDIDAT LA MOITIÉ DES POINTS.

E. 1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE BACCALAURÉAT PROFESSIONNEL ÉNERGÉTIQUE

Sous-épreuve , A 1 : Étude scientisique et technique d'un ouvrage

Option A: Installation et mise en oeuvre des systèmes énergétiques et climatiques

A1 (Domaine Froid et Climatisation)

enusserq etulosdA - eulosda noisserq

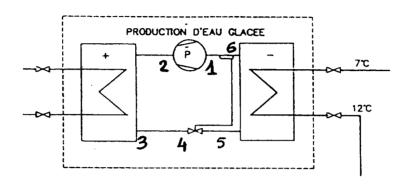
Copyright © Dehon Service 1989

Direction et Services ; 26, avanua du Petit Parc, 94683 Vincennes Cedex

A ST A FCL bis

0109-ENE

SESSION 2001


E. 1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve .A 1 : Étude scientifique et technique d'un ouvrage

Unité U.11

Option A: Installation et mise en oeuvre des systèmes énergétiques et climatiques
A1 (Domaine Froid et Climatisation)

Corrigé 2/3

POINTS	Pression Abs.	Température	Enthalpie	Titre de liquide	Volume massique
	En Bars	En ° C	En KJ/Kg	%	En m3/Kg
1	3,15	+8	404	0	0,065
2	8,86	+44	426	0	
3	8,86	+35	249	100%	50 19
4	8,86	+30	242	100%	
5	3,15	+2	242	80%	
6	3,15	+2	398	0	

SESSION 2001

E. 1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve .A 1 : Étude scientifique et technique d'un ouvrage

Unité U.11

Option A: Installation et mise en oeuvre des systèmes énergétiques et climatiques

A1 (Domaine Froid et Climatisation)

CORRIGE 3/3

- d) 2,14 b
- e) 6 K
- f) 35:156 = 0,224 kg/s= 807,69 kg/h
- g) H2 H4 = 426 242 = 184 kJ/kg 184 * 807 = 148 488 kJ 184 * 0.224 = 41.21 kW
- h) H2 H1 = 426 404 = 22 kJ
- i) H6 H5 / H2 H1 = 398 242 / 426 404 = 7

SESSION 2001

E. 1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve .A 1 : Étude scientifique et technique d'un ouvrage

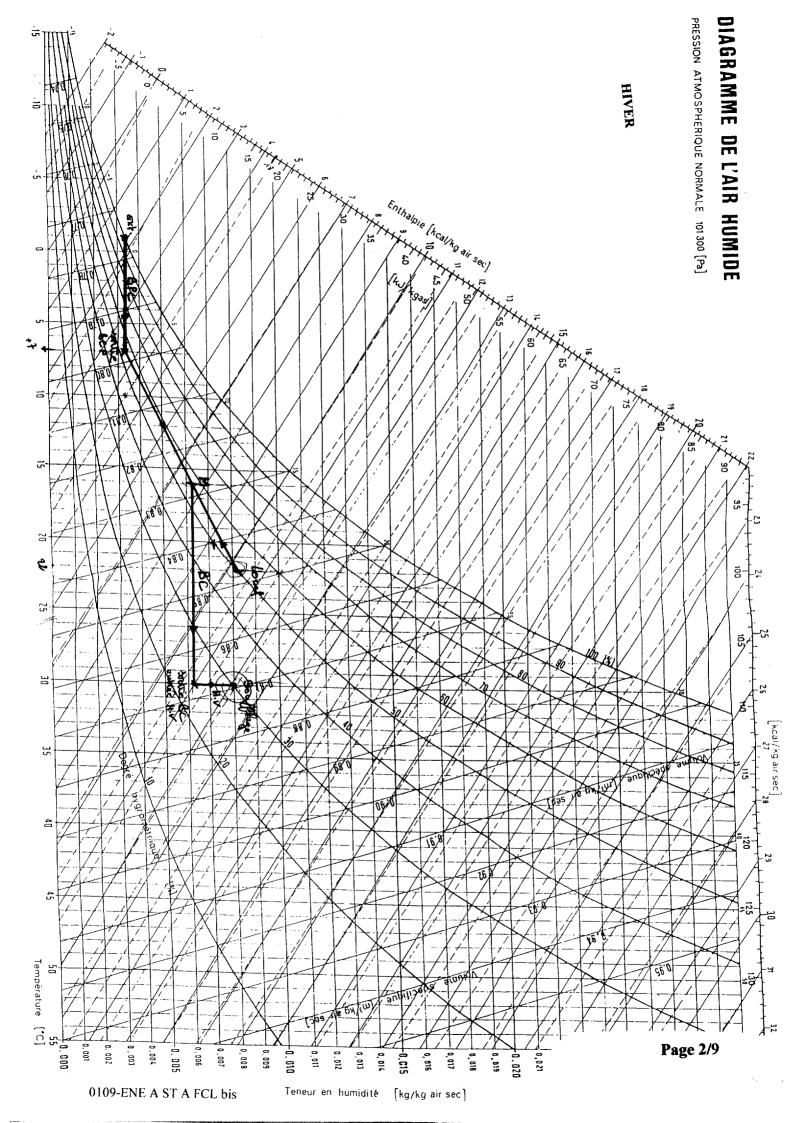
Unité U.11

Option A: Installation et mise en oeuvre des systèmes énergétiques et climatiques
A1 (Domaine Froid et Climatisation)

Durée : 4 heures

Coefficient: 2

CORRIGE


Barème de correction

Question 2 sur 36 points

Question 3 sur 10 points

Question 4 sur 10 points

SI LA RÉPONSE NE CORRESPOND PAS AU RÉSULTAT ATTENDU ET QUE LA DÉMARCHE EST EXACTE, IL SERA ATTRIBUE AU CANDIDAT LA MOITIÉ DES POINTS.

a) Déterminer en kg/s le débit d'air massique de soufflage « qmAS » et le débit massique d'air neuf « qmAN » (4 points)

$$\frac{\text{d\'ebit d'air massique air repris}}{\text{v''air repris}} = \frac{\textbf{0.847 m}^3/\text{kg}}{\text{qm AR}} = (1296/3600) \times 1/0.847 = \underline{\textbf{0.425 kg/s}}$$

débit d'air massique de soufflage (taux air neuf = 40%) on sait : qmAS = qm AR + qm AN

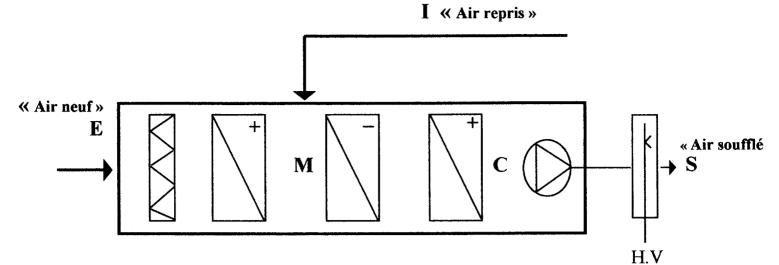
$$qm AS = 0.425 / 0.60 = 0.708 kg/s$$

débit massique d'air neuf

$$qmAN = 0.708 \times 0.40 = 0.283 \text{ kg/s}$$

- \Rightarrow On prendra dans la suite de l'etude « QmAS = 0.8 kg/s »
- b) Calculer l'enthalpie de l'air de sortie de batterie de préchauffage et en déduire sur le diagramme la température sèche). (4.5 points)

$$qmAS = 0.8 \text{ KG/S } & PBPC = 4 \text{ KW}$$


hBPC sortie =
$$P + (qmAS \times hBPC \text{ entrée})$$

 $qmAS$

h BPC sortie =
$$4 + (0.8 \times 7.5)$$

0.8

- h BPC sortie = 12.5 kj/kgas
- Température sèche BPC sortie = $4.5 \, ^{\circ}$ C
- \Rightarrow On prendra dans la suite de l'etude : temperature air de sortie de batterie de prechauffage = $+7^{\circ}$ C
- c) Température sèche du point de mélange. (6 points)

 θ m = + 16 °C

qmAN =
$$0.8 \times 0.40 = \underline{0.32 \text{ kg/s}}$$

qm AR = $0.8 \times 0.60 = \underline{0.48 \text{ kg/s}}$
 θ m = $\underline{(\text{qm AR } \times \theta \text{ AR }) + (\text{qmAN } \times \theta \text{ BPC sortie})} = \underline{\text{qmAS}}$
 θ m = $\underline{0.8 \times (22) + (0.8 \times 7)}$
 0.8

d) Tracer l'évolution de l'air dans la centrale sur le diagramme psychrométrique (utiliser les lettres repères du schéma de principe). (7 points)

e) Compléter le tableau des caractéristiques. (5.5 points soit 0, 25 / valeur)

POINTS	θ sèche	θ humide	θ rosée	enthalpie	Humidité relative	Teneur en eau	Volume spécifique
Unités	° C	°C	°C	Kj/kg as	%	Kg/kg as	m³/kg as
Air repris I	+22			43.2	50		0.847
Air neuf E	-1	-1		7.5	100	0.0033	
Sortie BPC	+7			15		0.0033	
Mélange M	+16	11.2		32.2	56		
Sortie BC C	+30			46.1			
Soufflage S	+30		10,7	50.8		0.008	

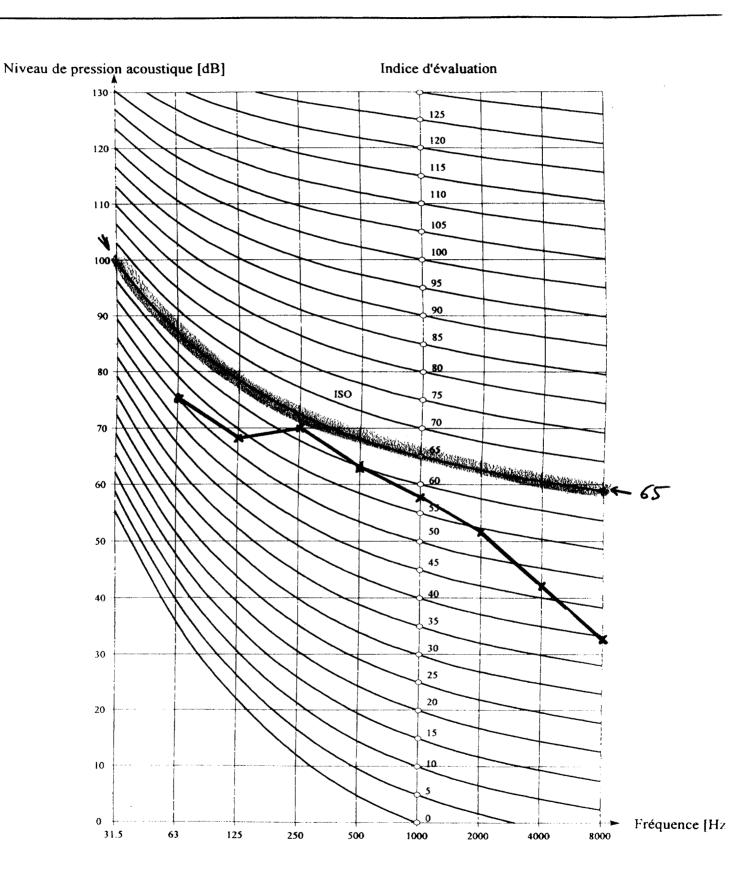
f) Calculer la puissance de la batterie chaude. (4.5 points)

$$P BC = qmAS \times \Delta h$$

$$P = 0.8 x (46.1 - 32.2)$$

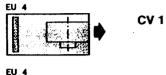
$$P BC = 11 Kw$$

g) Calculer la puissance de l'humidificateur à vapeur. .(4 points)

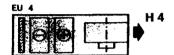

$$P HV = 0.8 x (50.8 - 46.1)$$

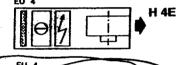
$$P HV = 3.76 Kw$$

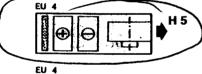
0109-ENE A ST A FCL bis Page 4/9

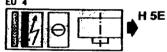

DOCUMENT REPONSE

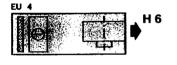
Niveaux de pression acoustique correspondant aux critères ISO.

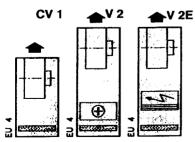

Modèles, montages et encombrement

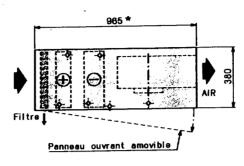

■ Différents modèles Modèle horizontal (H)

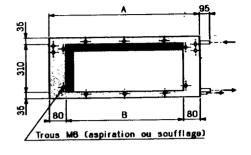






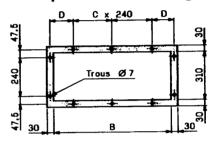


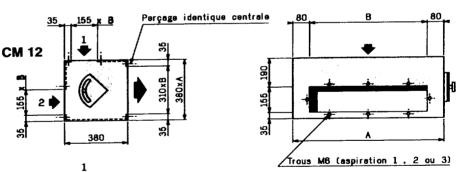


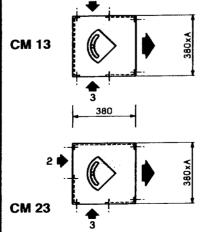


Modèle vertical (V)

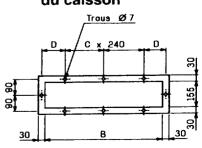
Nota: le filtre "EU 4" est supprimé lorsque la centrale est équipée d'un CFP 1 ou CFP 2 (filtre à poches)




* modèle CV 1 = 560


FE	A	В	С	D	Masse kg H4 et H5
15	690	530	2	37,5	70
22	885	725	2	135	83
40	1335	1175	4	120	135
60	1936	1776	7	60,5	200

Perçage conseillé gaine d'aspiration ou soufflage



■ Caissons de mélange H ou V (montage à l'aspiration)

Perçage conseillé gaine d'aspiration du caisson

Page 6/9

* Centrales de traitement d'air CIAT *

Tableaux de sélection

Batterie chaude - Eau chaude

=					ya aya						e viere	Į.	\$				40		3.3			AFE.	10		
Régime eau °C	Temp. entrée air °C	5(00		00	15	00	15	60)	l je	Ó	1 3	bit d' 00	air m 25			公	40	00	40			00	60	00
		P	T		10	P		P.				P	T	e		1				2			1	•	T
\sim	(I_{10})	11,3	57,3	17,3	41,5	23,1	35,7	25,9	41,3	29,6	38,9	33,8	35,7	41,6	39,5	49,3	05,8	57,2	32,5	73,8	44,9	85,0	40,5	95,8	37,
90/70	9	10,1	59,7	15,4	45,8	20,5	40,6	23,0	45,7	26,4	43,6	30,1	40,7	37,0	44,0	43,7	40,6	50,7	37,7	65,5	48,7	75,7	45,0	85,2	42,
	+15	8,1	60,0	12,6	52,5	16,6	47,8	18,8	52,1	21,3	50,1	24,4	48,0	29,7	50,3	35,2	47,7	40,9	45,4	52,6	54,0	61,4	51,4	68,4	48,8
	-10	6,5	28,7	10,2	20,3	13,5	16,9	15,0	19,8	17,2	18,5	20,0	16,9	22,0	26,2	24,0	12,2	26,0	9,3	40,0	20,5	45,0	17,4	45,0	12,8
45 / 37	0	5,2	30,8	8,0	23,8	10,9	21,;5	12,0	23,8	13,8	22,7	16,0	21,5	19,2	22,9	18,0	16,7	22,0	16,3	30,0	23,0	37,0	22,6	39,0	19,8
	+15	3,2	33,9	5,0	29,7	6,6	28,0	7,5	29,8	8,5	29,0	9,8	28,2	11,7	28,9	13,9	27,9	16,0	27,0	20,0	30,0	24,0	29,8	26,0	28,4

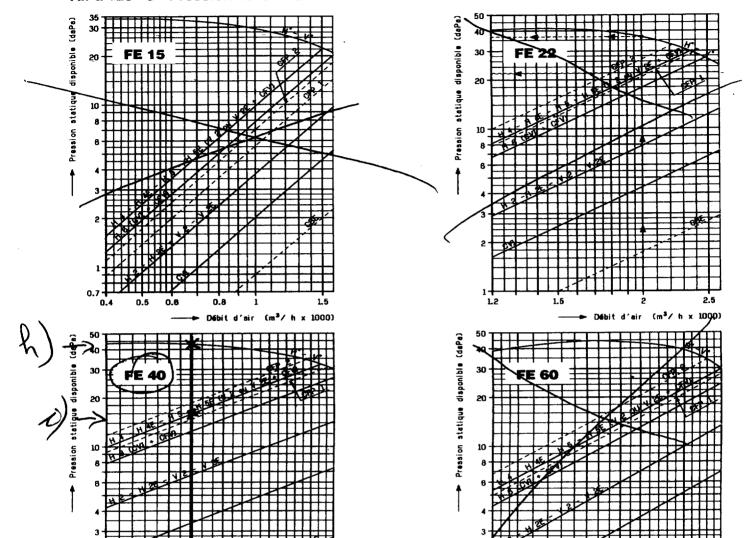
Batterie froide - Eau glacée

Emiss	ions fri	gori	fiqι	ıes	(tot	ale	en en	kΝ	,					·				7							
Régime eau "C	Tapp.		0 0 &		es de							D 2					Security Security			6					DO
		70-50					re L		1		ا ماراد با	100		rey. Parawa				24							T
	24 (50 %)	2,5	11,9	4,5	12,7	6,2	13,5	7,4	12,1	8,4	12,5	9,9	12,8	11,0	12,8	13,5	13,2	16,1	13,6	20,3	11,9	23,7	12,4	26,6	12,9
6/11	27 (50 %)	3,8	11,5	6,7	13,0	9,2	13,9	10,8	12,3	12,4	12,8	14,2	13,5	16,5	13,1	20,0	13,6	23,4	14,3	28,6	12,3	32,7	13,2	36,6	13,9
	30 (40 %)	4,1	11,7	7,1	13,3	9,7	14,3	11,4	12,8	13,1	13,3	15,0	13,9	17,9	13,4	21,8	14,0	25,8	14,6	30,4	12,7	35,3	13,5	39,8	14,2
	24 (50 %)	2,2	12,6	4,0	13,5	5,4	14,1	6,6	12,8	7,6	13,2	8,9	13,5	9,6	13,7	11,9	13,9	14,0	14,3	18,0	12,7	21,0	13,2	23,9	13,6
7/12	27 (50 %)	3,4	12,6	5,9	13,9	8,0	14,8	9,7	13,2	11,2	13,6	12,7	14,3	14,8	14,0	18,0	14,4	21,3	14,9	25,7	13,3	29,9	13,9	33,6	14,5
	30(40 %)	3,7	12,5	6,5	14,1	8,9	15,1	10,5	13,5	11,9	14,1	13,7	14,7	16,5	14,0	19,9	4,7	23,2	15,4	28,2	13,4	32,7	14,2	36,4	14,9
	24 (50 %)	2	13,3	3,3	14,3	4,6	14,9	5,8	13,6	6,7	13,9	7,8	14,2	8,4	14,4	10,4	14,8	12,5	15,1	15,9	13,4	18,7	13,9	21,0	14,3
8 / 13	27 (50 %)	2,9	13,7	5,2	14,8	7,1	15,6	8,6	14,1	9,9	14,5	11,2	15,1	13,2	14,8	15,9	15,2	18,5	15,8	23,3	14,0	27,2	14,6	30,5	15,1
	30 (40 %)	3,4	13,4	5,9	15,0	8,2	15,8	9,4	14,4	10,9	14,8	12,6	15,3	14,8	15,0	18,0	15,5	21,4	16,0	25,7	14,2	29,7	15,0	33,2	15,7

Colonne P : Puissances calorifiques en kW.
Colonne T : Températures de sortie d'air en °C.

Batterie de réchauffage électrique

Emissions calorifiques en W - Température d'entrée d'air : +10 °C


2000	Débit d'air	Emission	Temp. sortie air	Résista	nces
	m ³ /h	Watt	,c	P. unitaire Watt	Nombre
	1500	7440	25	620	12
Modul	2200	12240	26	1020	12
(2 étappe)	4000	20040	25	1670	12
	6000	30000	25	2500	12
	1500	14880	40	620	2 x 12
Date:	2200	24480	42	1020	2 x 12
(2+2-2)	4000	40080	40	1670	2 x 12
FE co	6000	60000	40	2500	2 x 12

Module 1 : batterie intérieure centrale (pour modèle H 2E, H 4E, H 5E ou V 2E).

CBE : caisson additionnel au soufflage (pour modèle H ou V).

Courbes de sélection

Air à +20 °C - Pression 1013 hPa

 \mathbf{H}^{\star} - \mathbf{V}^{\star} = caractéristiques du ventilateur seul en caisson (centrale modèle \mathbf{H} ou \mathbf{V})

Débit d'air

 $(m^3/h \times 1000)$

--- = Résistances au passage de l'air des accessoires Résistance au passage de l'air du CFP1 ou CFP2 : le Δ P tracé tient compte du Δ P filtre "EU 4" qui est incorporé dans le caisson CFP1 ou CFP2 et de l'absence du filtre "EU4" dans les modèles CV 1 à H 6.

Exemple de sélection

Débit d'air = 2000 m³/h - Modèle H 4, Climaciat FE 22, pression statique souhaitée = 12 daPa

- Pression statique totale = 370 Pa - Résistance sur l'air H 4 = 220 Pa
- Pression statique disponible = 150 Pa

Niveaux sonores

Modèles	43.5	FE 15		e.	FE 22			FE 40			FE 60	
Débit d'air m ³ /h	500	1000	1500	1500	1800	2200	2500	3200	4000	4000	5000	6000
Pression disponible Pa	305	190	0	280	210	70	340	270	140	320	270	160
Niveau global dB(A)	40	41	41	44	44,5	45	47	47,5	48	49	50	41

Nota: Les niveaux de pression sont donnés en champ libre, à 3 m sous l'appareil. Ils correspondent au modèle H 4 (filtre, batterie de chauffe, batterie de froid et ventilateur) et avec une gaine de 4 mètres au refoulement et à l'aspiration.

Débit d'air (m³/ h x 1000)

SESSION 2001

E. 1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

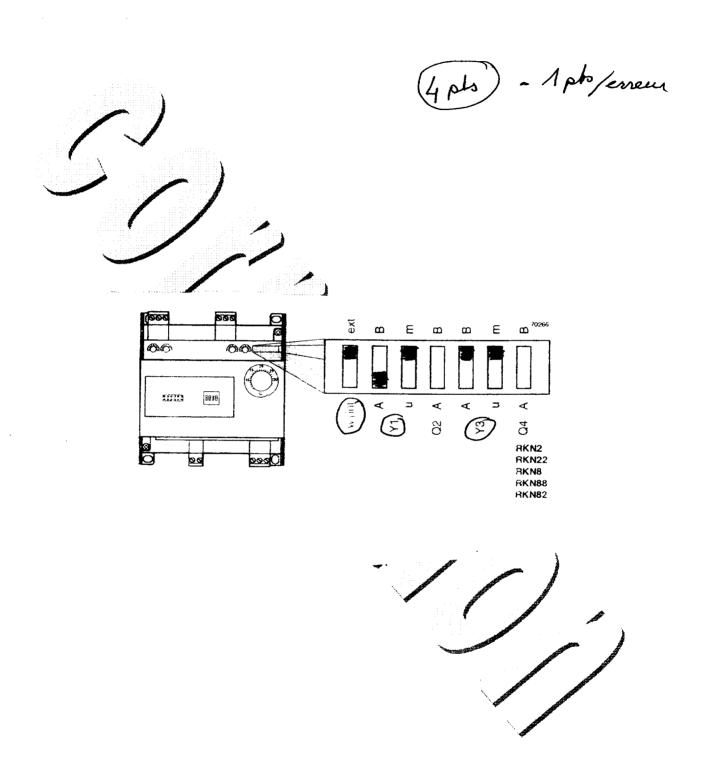
Sous-épreuve .A 1 : Étude scientifique et technique d'un ouvrage

Unité U.11

Option A : Installation et mise en oeuvre des systèmes énergétiques et climatiquesA1 (Domaine Froid et Climatisation)

Durée : 4 heures

Coefficient: 2


CORRIGE Question 5

SI LA RÉPONSE NE CORRESPOND PAS AU RÉSULTAT ATTENDU ET QUE LA DÉMARCHE EST EXACTE, IL SERA ATTRIBUE AU CANDIDAT LA MOITIÉ DES POINTS.

a) <u>Effectuer le choix du type du régulateur, justifier la réponse</u>. (indiquer d'une croix la réponse adéquate entre le RKN 8 et le RKN 88)

c) en fonction du cahier des charges donné en annexe 3, effectuer le paramétrage des consignes relatives à w1, y1 et y3.

SESSION 2001

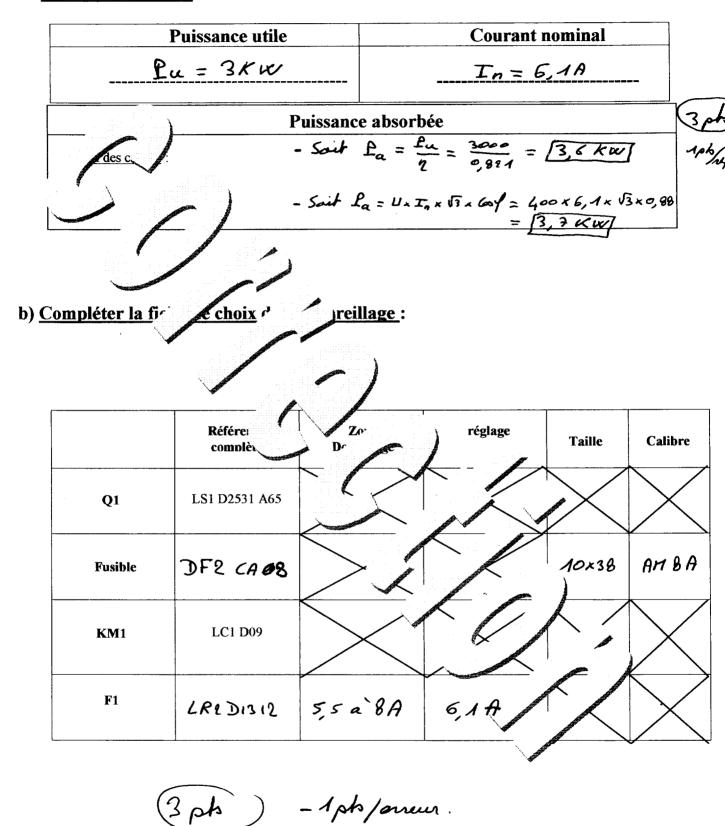
E. 1 - ÉPREUVE SCIENTIFIQUE ET TECHNIQUE

Sous-épreuve .A 1 : Étude scientifique et technique d'un ouvrage

Unité U.11

Option A: Installation et mise en œuvre des systèmes énergétiques et climatiques

A1 (Domaine Froid et Climatisation)

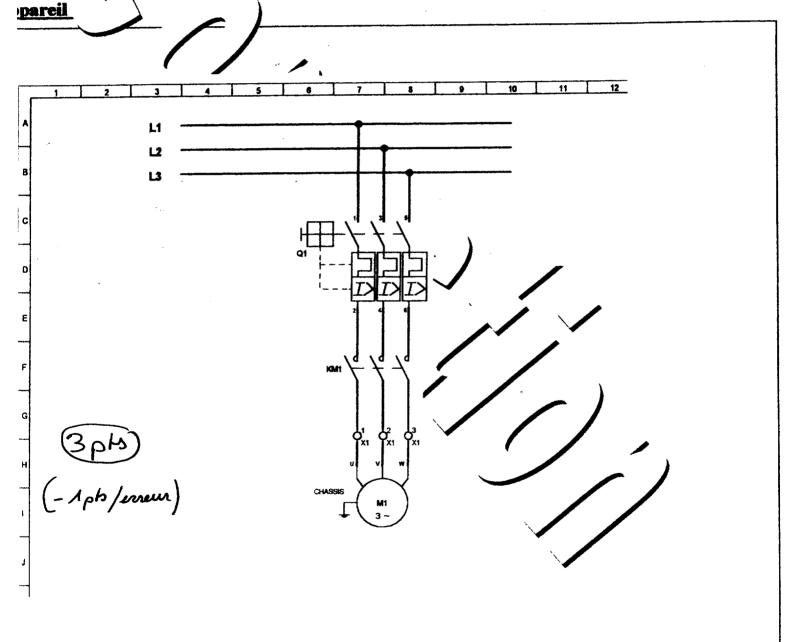

Durée : 4 heures

Coefficient: 2

CORRIGE QUESTION 6

SI LA RÉPONSE NE CORRESPOND PAS AU RÉSULTAT ATTENDU ET QUE LA DÉMARCHE EST EXACTE, IL SERA ATTRIBUE AU CANDIDAT LA MOITIÉ DES POINTS.

a) <u>Déterminer la puissance utile et le courant nominal de la pompe et en deduire sa puissance absorbée</u>


Afin d'améliorer les performance de l'installation, on désire simplifier le départ moteur de la pompe en remplaçant certains appareils par un seul et même composant : le disjoncteur moteur magnéto-thermique

Dimensionner le disjoncteur moteur à installer :

	Référence complète	Zone De réglage	régiage
Disjoncteur moteur	GVA HI4	6 a 10A	6,1A

(3 pts) (1 ph par case)

Complete nouveau schéma de puissance en prenant en compte la symbolisation du nouvel

