Baccalauréat professionnel	EC	OGT	Session 2001		
Mathématiques et Sciences Physiques	SUJET	Durée : 2 heures	Page 1/5		

SCIENCES PHYSIQUES (5 points)

EXERCICE 1

Pendant la construction d'un complexe cinématographique, on a utilisé un palan soulevant une charge de 800 kilogrammes à la vitesse moyenne de 0,3 m/s, dont le moteur électrique est alimenté sous une tension efficace (monophasée) de 230 V avec une fréquence de 50 Hz.

- 1. Sachant que le rendement cinématique (entre l'arbre du moteur et la charge) est de 0,60 calculer :
 - la puissance mécanique absorbée par la charge au cours de sa montée,
 - la puissance fournie par le moteur électrique.
- 2. Le moteur électrique a un rendement de 0,85. Son facteur de puissance est 0,88. Calculer l'intensité du courant qui traverse le moteur.

Remarque: On prendra g = 10 N/kg.

EXERCICE 2

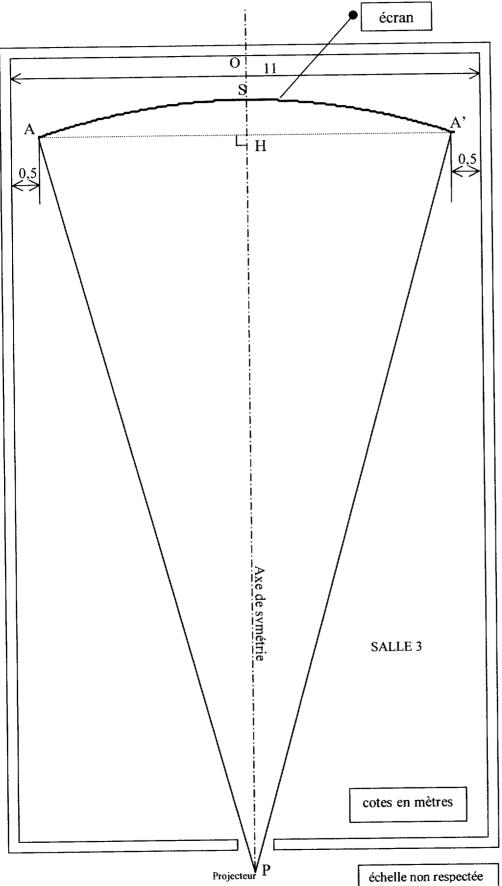
Pour alimenter en eau chaude les lave-mains, on utilise un chauffe-eau parfaitement isolé qui débite 6 litres d'eau par minute à la température de 70 $^{\circ}$ C; l'eau pénètre dans le chauffe-eau à 16 $^{\circ}$ C. Calculer l'énergie gagnée par l'eau en une minute.

On donne: $E = m \times c \times (\theta_2 - \theta_1)$.

Pour l'eau, masse d'un litre : 1 kg, c = 4180 J/kg.

Baccalauréat professionnel	EOGT		Session 2001
Mathématiques et Sciences Physiques	SUJET	Durée : 2 heures	Page 2/5

MATHÉMATIQUES (15 points)



Le document technique représente la salle 3 du multiplex cinématographique "Le Rex".

On se propose de déterminer la position des points de la fixation de l'écran ainsi que l'estimation de la longueur d'un renfort nécessaire à la rigidité de l'ensemble.

Baccalauréat professionnel	Е	OGT	Session 2001
Mathématiques et Sciences Physiques	SUJET	Durée : 2 heures	Page 3/5

PARTIE I :Travail sur le document technique.

- 1. Déterminer la distance entre le projecteur P et le centre S de l'écran sachant que PH = 18,20 m et HS = 1 m.
- 2. Déterminer la distance PA entre le projecteur et le point A correspondant au bord de l'écran. Exprimer le résultat arrondie au cm.
- 3. Calculer la mesure, en degré, de l'angle $\widehat{A'PA}$, exprimer le résultat arrondi à l'unité.

PARTIE II: Modélisation dans le plan rapporté au repère orthonormal (Ox, Oy) de l'Annexe 1 de l'écran à partir du mur du fond de la salle.

A.

- 1. Placer dans le plan rapporté au repère orthonormal (Ox, Oy), d'unité graphique 1 cm, de l'annexe 1 page 5/5, les points A, A' et S de coordonnées respectives, (5; 3), (-5; 3) et (0; 2).
- 2. Une équation de l'arc de courbe $\mathcal C$ passant par les points A, S et A' est de la forme

 $y = ax^2 + bx + c$ pour tout nombre réel x de l'intervalle [-5; 5].

- a) Utiliser les coordonnées du point S pour déterminer la valeur du terme c.
- b) Montrer que $\begin{cases} 1 = 25a + 5b \\ 1 = 25a 5b \end{cases}$ en utilisant les coordonnées des points A et A'.
- c) Calculer a et b.

B.

On considère la fonction f définie pour tout nombre x de l'intervalle [-5; 5] par $f(x) = 0.04x^2 + 2$.

- 1. Compléter le tableau de valeurs situé en Annexe 1 page 5/5.
- 2. On note f' la fonction dérivée de la fonction f.
 - a) Calculer f'(x) pour tout nombre x de l'intervalle [-5; 5]
 - b) Pour tout nombre x de l'intervalle [-5; 5], étudier le signe de f'(x) puis compléter le tableau de variation de la fonction f situé en annexe 1 page 5/5.
- 3. Tracer la représentation graphique de la fonction f dans le plan rapporté au repère (Ox, Oy) de l'annexe 1.

C.

- 1. Montrer qu'une équation de la droite d_1 tangente à la courbe en son point E d'abscisse 2,5 est y = 0.2x + 1.75.
- 2. Tracer, à l'annexe 1, la droite d₁.
- 3. Tracer, à l'annexe 1, la droite d_2 dont une équation est x = 5,5.
- 4. Les droites d_1 et d_2 se coupent au point I. Déterminer, en cm, à laide d'une règle graduée, la longueur du segment [EI].

PARTIE III.

Le segment [EI] correspond dans la réalité au renfort destiné à rigidifier l'écran.

Calculer [EI] et en déduire la longueur réelle de ce renfort, sachant qu'une unité graphique correspond à 1 m dans la réalité.

Baccalauréat professionnel	EC	OGT	Session 2001
Mathématiques et Sciences Physiques	SUJET	Durée : 2 heures	Page 4/5

PARTIE IV

Feuille à rendre avec la copie

Le bilan de la première année d'exploitation est donné dans le tableau statistique suivant :

Fréquentation (nombre de spectateurs)	Effectifs (nombre de séances)	Fréquences	Fréquences cumulées croissantes	Fréquences cumulées croissantes (en %)	
[0;20[32			•••	
[20 ; 40 [0,10			
[40 ; 60 [•••	0,25		
[60 ; 80 [288	•••	0,70		
[80 ; 100 [96			85	
[100 ; 120 [96	0,15	1,00	100	
	N = 640	1,00			

Le responsable de la salle compare son bilan avec les objectifs qu'ils avaient formulés ainsi :

- fréquentation moyenne annuelle supérieure à 60 spectateurs,
- 50% des séances avec plus de 60 spectateurs.
 - 1. Compléter les colonnes 2, 3 et 4 du tableau.
 - 2. Calculer par la méthode de votre choix la fréquentation moyenne \bar{x} par séance en associant chaque effectif à la valeur centrale de la classe correspondante.
 - 3. On admet que la répartition est uniforme dans chaque classe,
 - a) determiner la construction du polygone des fréquences cumulées croissantes.
 - b) déterminer graphiquement la valeur médiane (nombre médian de spectateurs par séance).
 - 5. Les objectifs annuels sont-ils atteints?

Baccalauréat professionnel	EOGT		Session 2001
Mathématiques et Sciences Physiques	SUJET	Durée : 2 heures	Page 5/5

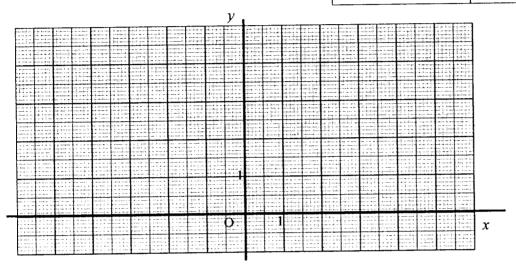
Partie II:

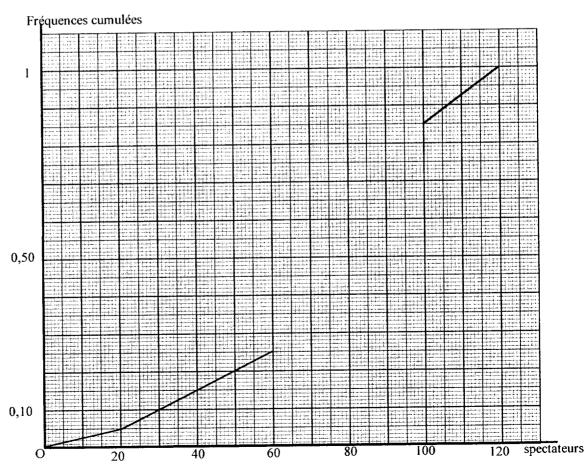
 $f(x) = 0.04x^2 + 2$

ſ	x	-5	-4	-3	-2	-1	0	1	2	3	4	5
	f(x)	3					2					3

Tableau de variation:

x	-5	•••	5
signe de f'(x)		0	
sens de variation de f			





page 1/1

FORMULAIRE BACCALAUREAT PROFESSIONNEL Artisanat, Bâtiment, Maintenance - Productique

Fonction f	<u>Dérivée f'</u>
f(x)	f'(x)
ax + b	а
x^2	2x
x^3	$3x^2$
1	<u> 1</u>
$\frac{-}{x}$	$\frac{1}{x^2}$
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Logarithme népérien : In

$$\ln\left(ab\right) = \ln a + \ln b$$

$$\ln(a^n) = n \ln a$$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Equation du second degré $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

- Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang $1: u_1$ et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + ... + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang 1 : u_1 et raison q

Terme de rang $n: u_n = u_l \cdot q^{n-l}$

Somme des k premiers termes :

$$u_1 + u_2 + ... + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Trigonométrie

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$

$$cos(a+b) = cosa cosb - sina sinb$$

 $\cos 2a = 2\cos^2 a - 1$

 $= 1 - 2 \sin^2 a$

 $\sin 2a = 2 \sin a \cos a$

Statistiques

Effectif total $N = \sum_{i=1}^{p} n_i$

Moyenne
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

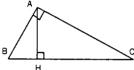
Variance

$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Ecart type $\sigma = \sqrt{V}$

Relations métriques dans le triangle rectangle

$$AB^2 + AC^2 = BC^2$$



$$\sin \widehat{B} = \frac{AC}{BC}; \cos \widehat{B} = \frac{AB}{BC}; \tan \widehat{B} = \frac{AC}{AB}$$

Résolution de triangle

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{B}} = \frac{c}{\sin \hat{C}} = 2R$$

R: rayon du cercle circonscrit

$$a^2 = b^2 + c^2 - 2bc \cos \widehat{A}$$

Aires dans le plan

Triangle: $\frac{1}{2}bc\sin \hat{A}$

Trapèze : $\frac{1}{2}(B+b)h$

Disque : πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de

base B et de hauteur h : Volume Bh

Sphère de rayon R:

Aire: $4\pi R^2$

Volume : $\frac{4}{3}\pi R^3$

Cône de révolution ou pyramide de base B et de hauteur h: Volume $\frac{1}{3}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$\vec{v} \cdot \vec{v}' = xx' + yy'$$

$$\vec{v}.\vec{v'} = xx' + yy' + zz'$$

$$\|\vec{v}\| = \sqrt{x^2 + y^2}$$

$$\|\vec{v}\| = \sqrt{x^2 + y^2 + z^2}$$

Si $\vec{v} \neq \vec{0}$ et $\vec{v}' \neq \vec{0}$:

$$\vec{v} \cdot \vec{v}' = ||\vec{v}|| \times ||\vec{v}'|| \cos(\vec{v}, \vec{v}')$$

 $\vec{v} \cdot \vec{v}' = 0$ si et seulement si $\vec{v} \perp \vec{v}'$