BACCALAUREAT PROFESSIONNEL

PILOTAGE DE SYSTEME DE PRODUCTION AUTOMATISE

Session 2002

Epreuve E1: Epreuve scientifique et technique

Sous épreuve A1 : Etude d'un système de production automatisé

Durée : 4 heures

Coefficient: 2

A partir des documents fournis, le candidat est amené à :

- **DEFINIR** des fonctions techniques qui réalisent une **FONCTION GLOBALE**.
- DECODER des documents techniques.
- ANALYSER le fonctionnement d'un système.
- ANALYSER CRITIQUER JUSTIFIER une solution constructive.
- **DECODER** une cinématique en rapport avec le système étudier.
- DEFINIR un ou des critères de choix.
- UTILISER les lois et les principes de la mécanique appliquée.

Ce sujet comporte trois dossiers :

Un Dossier Technique :

D.T. 1/14 à D.T. 14/14

• Un Dossier Ressource :

D.R. 1/1

♦ Un Dossier Sujet Réponse :

D.S.R. 1/14 à D.S.R. 14/14

(avec un barème de notation : folio 0/0)

IMPORTANT

Le Dossier Sujet Réponse complet (barème de notation 0/0 + Document Sujet Réponse D.S.R. 1/14 à D.S.R. 14/14) ne portera pas l'identité du candidat. Il sera agrafé par les surveillants de salle, dans l'ordre de pagination, à l'intérieur d'une copie d'examen, sous la bande d'anonymat.

AUCUN DOCUMENT PERSONNEL AUTORISE CALCULATRICE AUTORISEE

Code 02%- PSP ST A

BACCALAUREAT PROFESSIONNEL PILOTAGE DE SYSTEME DE PRODUCTION AUTOMATISE Session 2002

Epreuve E1 / Epreuve scientifique et technique

Sous épreuve A1 : Etude d'un système de production automatisé

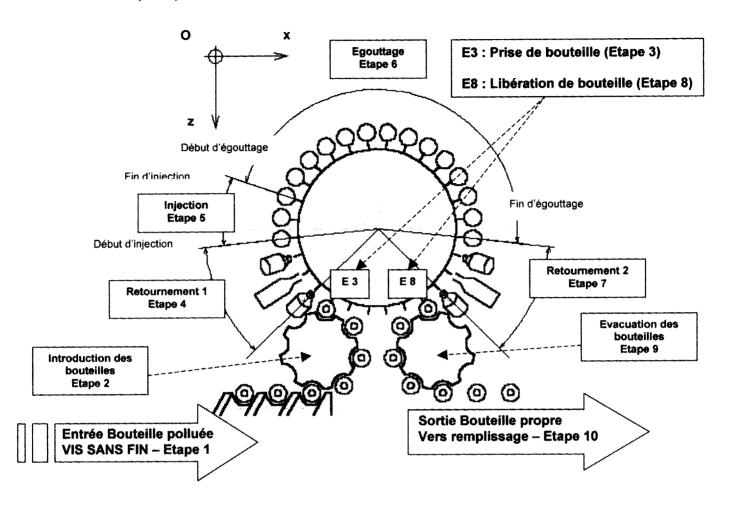
DOSSIER SUJET REPONSE

Ce dossier comporte 14 Documents Sujet Réponse repérés : D.S.R. 1/14 à D.S.R. 14/14, il se décompose en deux parties :

- Première partie Analyses et études : ROUE et ROBINET INJECTEUR
- Deuxième partie Étude Mécanique : ROUE et BRAS DE PRISE DE BOUTEILLES

	BACCALAUREAT PROFESSIONNEL	
	PILOTAGE DE SYSTEME DE PRODUCTION	
	AUTOMATISE	
Barème de correction	Session 2002	
	Epreuve E1 / Epreuve scientifique et technique	Folio 0/0
	Sous épreuve A1 : Etude d'un système de	
	production automatisé	

THEME: RINCEUSE - EGOUTTEUSE


FONCTIONS TECHNIQUES D'UN SOUS-SYSTEME	Q.1/ D.S.R. 2/14	/ 4.5 pts
ANALYSE DE DOCUMENTS TECHNIQUES	Q.1/ D.S.R. 3/14	/ 7.5 pts
ANALYSE FONCTIONNELLE DU SOUS SYSTEME RINCEUSE - EGOUTTEUSE	Q.1/ D.S.R. 5/14 Q.2/ D.S.R. 6/14	/ 7 pts
ETUDE CINEMATIQUE DE LA ROUE	Q.1/ D.S.R. 7/14 Q.2/ D.S.R. 7/14 Q.3/ D.S.R. 8/14 Q.4/ D.S.R. 8/14	/ 4.5 pts
ETUDE CONSOMMATION MACHINE	Q.1/ D.S.R. 9/14 Q.2/ D.S.R. 9/14 Q.3/ D.S.R. 9/14 Q.4/ D.S.R. 10/14 Q.5/ D.S.R. 10/14	/ 6.5 pts
ETUDE SERRAGE BOUTEILLE	Q.1/ D.S.R. 11/14 Q.2/ D.S.R. 11/14	/ 5 pts
ETUDE STATIQUE	Q.1/ D.S.R. 12/14 Q.2/ D.S.R. 12/14 Q.3/ D.S.R. 13/14 Q.4/ D.S.R. 14/14	/ 13 pts
GAMME DE DEMONTAGE	Q.1/ D.S.R. 14/14	/ 2 pts

TOTAL:	/ 50 pts
TOTAL.	/ 50 pts

TOTAL : / 20 pt	ots
-----------------	-----

Dossier Sujet Réponse	RINCEUSE -EGOUTTEUSE	D.S.R. 1/14
Dossier Sujet Neporise	Roue + robinet injecteur	2.0

Schéma de principe de fonctionnement de la RINCEUSE –EGOUTTEUSE

• Caractéristiques Constructeur :

CADENCE	Temps de Traitement CADENCE (Temps d'injection + Temps d'égouttage	Eau résiduelle Après égouttage		
		35cl		:
8000 bout.	7,2s	1,1ml	1,7ml	2,2ml
9000 bout.	6,4s	1,2ml	1,8ml	2,3ml
10000 bout.	5,8s	1,3ml	1,9ml	2,4ml
11000 bout.	5,3s	1,4ml	2,0ml	2,6ml

- Nombre de robinets montés sur la Roue : 28 pour 360°
- Nombre de robinets inclus dans le temps de traitement : 16 pour 193°
- Pression de sortie du gicleur Rep.14 : 2,5 bar < p < 4 bar (1 gicleur/robinet) (consultez D.T. 8/14, Rep. 14 et 15)

> Remarques:

- Retournement 1 : La bouteille se retourne (goulot en bas culot en haut).
- Retournement 2 : La bouteille se retourne (goulot en haut culot en bas).

	RINCEUSE - EGOUTTEUSE	
Dossier Sujet Réponse		D.S.R. 2/14
	Roue + robinet injecteur	

FONCTIONS TECHNIQUES D'UN SOUS-SYSTEME (Rinceuse - Egoutteuse)

Problème technique posé

Afin de faciliter l'intervention du pilote de l'installation lors de dysfonctionnements du rinçage des bouteilles, on se propose de constituer plusieurs documents d'aide permettant d'identifier rapidement les fonctions et de repérer la constitution de la partie opérative de la RINCEUSE – EGOUTTEUSE

Q.1 / A partir du Document Sujet Réponse D.S.R. 1/14, représentant les différentes étapes, énoncer les fonctions techniques pour chaque étape.

ETAPES	Fonctions techniques
Etape1	AMENER les bouteilles à l'étoile d'entrée
Etape 2	
Etape 3	
Etape 4	
Etape 5	
Etape 6	
Etape 7	
Etape 8	
Etape 9	
Etape 10	

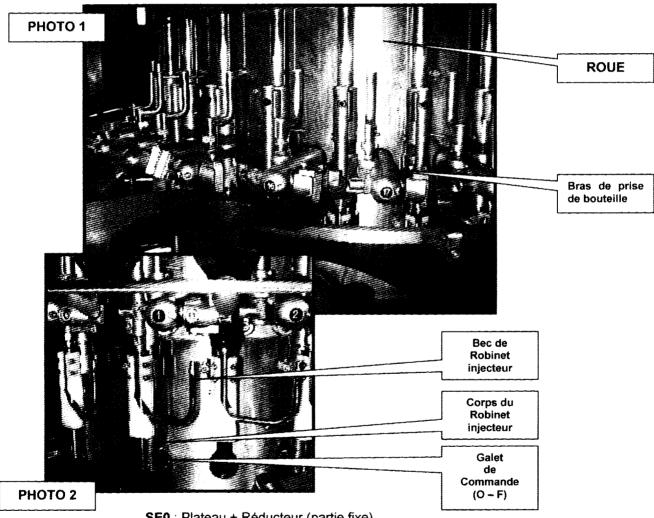
	RINCEUSE - EGOUTTEUSE	
Dossier Sujet Réponse		D.S.R. 3/14
	Roue + robinet injecteur	

ANALYSE DE DOCUMENTS TECHNIQUES

Les documents techniques D.T. 8/14 et D.T. 9/14 ont été réalisés dans deux bureaux d'études différents. Les repères des éléments constituant le robinet injecteur ne sont pas les même. Sur le D.T. 8/14 les éléments sont repérés par des **nombres** alors que sur le D.T. 9/14 ils sont repérés par une **lettre suivie d'un chiffre**.

Q.1 / Il vous est demandé dans le tableau ci-dessous d'indiquer les repères (nombre) correspondant aux repères (lettre + chiffre).

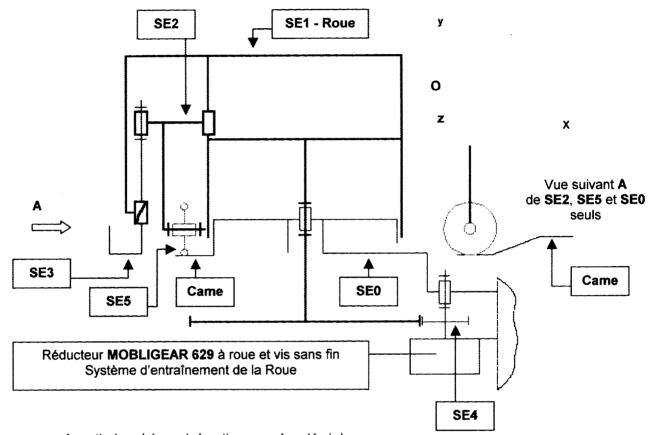
Repérage (lettre + chiffre)	Repérage (nombre)
Exemple : A1	3
B1	
B2	
В3	
C1	
C2	
D1	
D2	
D4	
D6	
D8	
E1	
E3	
E4	
G1	
G3	


Dossier Sujet Réponse	RINCEUSE – EGOUTTEUSE	D.S.R. 4/14
20000. 02 , 0000	Roue + robinet injecteur	

ANALYSE FONCTIONNELLE DU SOUS-SYSTEME : RINCEUSE - EGOUTTEUSE

Problème technique posé

L'étude précédente (D.S.R. 2/14) a été demandée par le Service Technique, suite à un fonctionnement incorrect du Robinet injecteur. Afin d'affiner la ou les causes du dysfonctionnement constaté, on propose d'étudier les mouvements relatifs entre les différents sous-ensembles constitutifs de la RINCEUSE - EGOUTTEUSE.


Désignation des différents sous-ensembles (SE) (voir schéma cinématique : D.S.R. 5/14) + Photos ci-dessous de certains sous-ensembles.

- SE0 : Plateau + Réducteur (partie fixe)
- SE1: ROUE + Bras de prise de bouteille (non représenté sur le schéma cinématique)
- SE2: Corps du Robinet injecteur
- SE3: Bec du Robinet injecteur
- **SE4**: Pignon moteur (entraînement de la ROUE en rotation)
- SE5: Galet (commande d'Ouverture et de Fermeture du Robinet injecteur réalisée par came - voir schéma cinématique D.S.R. 5/14)
- REMARQUE: Robinet injecteur = {SE2 + SE3 + SE5 }

	RINCEUSE – EGOUTTEUSE	
Dossier Sujet Réponse		D.S.R. 5/14
	Roue + robinet injecteur	

- ⇒ Schéma cinématique de la RINCEUSE EGOUTTEUSE (avec le système d'entraînement de la Roue)
 - Le Repère (O, x, y, z) est fixe, lié au **SE0** (sous-ensemble iso cinématique)

- A partir du schéma cinématique représenté ci-dessus :
- Q.1 / Définir les différentes liaisons entre les sous-ensembles iso cinématiques en complétant le tableau ci-dessous (voir exemple SE1/SE4).(consultez le Document Ressource : D. R. 1/1)
 - Rappel: un sous-ensemble iso cinématique est un groupe de pièces (ou éléments) n'ayant aucun mouvement relatif pendant l'accomplissement de la fonction globale (liaison encastrement ou fixe)

SE0	SE0			L		
SE1		981				
SE2			SE2			
SE3				SE 3		
SE4		Ponctuelle			SE4	
SE5						8E5

	RINCEUSE -EGOUTTEUSE	
Dossier Sujet Réponse		D.S.R. 6/14
	Roue + robinet injecteur	

Q.2 / Indiquer les degrés de liberté par rapport au repère fixe (O, x, y, z) pour chacune des liaisons définies entre les différents sous-ensembles.

• Code : Degré(s) de liberté possible(s) : 1

(voir exemple ci-dessous – **SE1/SE4**)

	Тx	Ту	Tz	Rx	Ry	Rz
SE0/SE1						
SE0/SE4						
SE0/SE5						
SE1/SE2						
SE1/SE3						200120020000000000000000000000000000000
SE1/SE4	1	1			1	1
SE2/SE3						
SE2/SE5						

/ 3.5pts

	RINCEUSE -EGOUTTEUSE	
Dossier Sujet Réponse		D.S.R. 7/14
	Roue + robinet injecteur	

ETUDE CINEMATIQUE (Entraînement de la roue)

(consultez Dossier Technique : D.T. 13/14)

Problème technique posé

La cadence de production de la ligne en fonctionnement normal est de 8000 b/h, pour répondre à une commande exceptionnelle qui fait passer la cadence à 11000 b/h, il faut donc déterminer la nouvelle fréquence de rotation du variateur de vitesses MULTIPLAN permettant l'entraînement de la Roue. La structure actuelle du système, permettra-t-elle cette augmentation de cadence ?

- 11110111	mation Constructeur : Pour une production de 8000 b/f 4,5 tr/min.	n, la roue à une fréquence de	e rotation (environ) de
>	Remarque : b/h : nombre de boute	eilles par heure	
Q.1 / Cal	llculer la fréquence de rotation de la	a roue (N _R tr/min) pour ur	ne cadence de 11000 b/h
			/ 1pt
	alculer la fréquence de rotation du p othèse : On considère que la fréquence		

Q.2 / Calculer la fréquence de rotation du pignon moteur (N _{Pmt} tr/n ✓ Hypothèse : On considère que la fréquence de rotation de la Roue es		

/ 1pt

/ 1.5pts

	RINCEUSE -EGOUTTEUSE	
Dossier Sujet Réponse	Roue + robinet injecteur	D.S.R. 8/14
Q.3 / Calculer la fréquence de	rotation de la vis sans fin (liée	au variateur de vitesse)
	.	
		/ 1pt
		L
	tation est-elle possible avec le la case correspondant à la réponse	
OUI	NON	
→ Justification :		
	·	

/ 1pt

Dossier Sujet Réponse	RINCEUSE -EGOUTTEUSE	D.S.R. 9/14
Bossior Gajot Ropelles	Roue + robinet injecteur	

ETUDE CONSOMMATION - MACHINE. (ROBINET INJECTEUR)

Problème technique posé

Cette cadence de 11000 b/h entraîne une consommation d'eau plus importante. Le Service Technique désire connaître la quantité d'eau supplémentaire en litres par heure. Dans le cas ou la commande serait acceptée, le Service Technique désire savoir s'il est nécessaire soit de :

- → Changer les gicleurs ?
- → Augmenter la vitesse d'écoulement de l'eau ? (consultez D.T. 8/14 et D.T. 9/14)

Caractéristiques techniques - Constructeur

	outable inclination	uoo
CADENCE	Temps d'injection	Débit du robinet injecteur
Nbre de Bouteilles par heure	en seconde	en centilitre/seconde
8000 b/h	0,8s	13,125 cl/s
11000 b/h	0,6s	17,5 cl/s

Remarque : la quantité d'eau injectée dans une bouteille, reste la même quelque soit la

production.	
Q.1 / Calculer la quantité d'eau injectée pour une bouteille (en litr	re)
	/ 1pt
Q.2 / Calculer la consommation horaire d'eau injectée pour une p	production de 8000 b/h et
	/ 1pt
Q.3 / Calculer la consommation horaire d'eau supplémentaire pob/h.	ur une production de 11000

	RINCEUSE -EGOUTTEUSE	
Dossier Sujet Réponse		D.S.R. 10/14
	Roue + robinet injecteur	

Q.4 / Vérifier par le calcul si le diamètre de sortie (d = 4mm) du gicleur Rep.14 monté sur les 28 robinets, est suffisant par rapport au débit, pour une cadence de 11000 b/h.(consultez le D.S.R. 9/14 et le D.T. 5/14)

Relation exprimant le débit q m 3 / s = S m 2 x V m / s Le diamètre de sortie est-il suffisant ? /2,5	
.5 / Il est possible, soit de changer les gicleurs, soit d'augmenter le débit d'in	
/ 2,5 5 / Il est possible, soit de changer les gicleurs, soit d'augmenter le débit d'inj	
/ 2,5 5 / Il est possible, soit de changer les gicleurs, soit d'augmenter le débit d'inj	
/ 2,5 5 / Il est possible, soit de changer les gicleurs, soit d'augmenter le débit d'in	
5 / Il est possible, soit de changer les gicleurs, soit d'augmenter le débit d'inj	
5 / Il est possible, soit de changer les gicleurs, soit d'augmenter le débit d'inj	
5 / II est possible, soit de changer les gicleurs, soit d'augmenter le débit d'in oposer une solution en justifiant ce choix.	5 pts
	nject

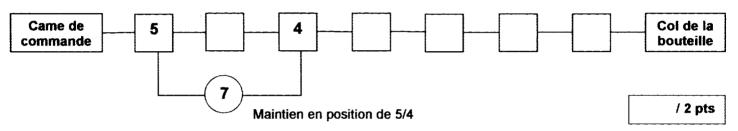
/ 1pt

RINCEUSE – EGOUTEUSE

Dossier Sujet Réponses

D.S.R. 11/14

Roue +Bras Prise de Bouteilles

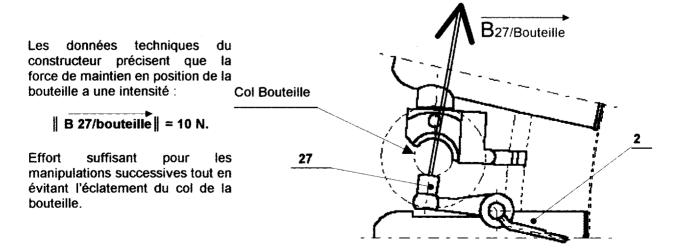

ETUDE DU BRAS PRISE DE BOUTEILLES

Problème technique posé

Lors des essais de production, on constate, par la chute d'une bouteille, le serrage insuffisant du col sur l'un des postes de prise, entraînant l'arrêt immédiat de la machine.

A l'aide du dossier technique (D.T. 11, 12, 13 et 14/14), on recherche la cause de ce dysfonctionnement.

Q.1 / Etablir ci-dessous le graphe des contacts entre les différentes pièces qui permettent à partir de la came de commande le serrage du col de la bouteille.


Après dépose du bras prise de bouteilles, on constate que le tampon rep 16 a subit un écrasement longitudinal.

Q.2	1	Cette	déformation	semble	avoir	des	conséquences	sur	le	serrage	de	la	bouteille.
Exp	liq	uer po	urquoi ?										

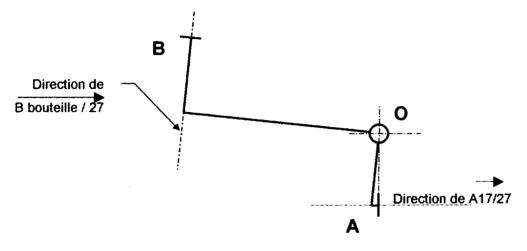
>	 -

/ 3 pts

On envisage de remplacer ce tampon par un ressort. Cette modification nécessite de connaître l'effort transmis par l'arbre à came rep 4 au doigt rep 27 afin de déterminer l'effort provoquant la déformation.

	RINCEUSE – EGOUTEUSE	
Dossier Sujet Réponses		D.S.R. 12/14
	Roue +Bras Prise de Bouteilles	

Isolement du Doigt rep 27


Hypothèses:

On néglige la masse du composant.

Les liaisons sont supposées parfaites (pas de frottement et pas de jeu).

Toutes les actions sont coplanaires.

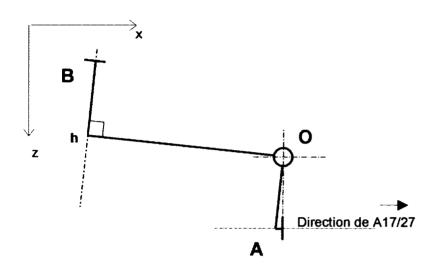
L'action du ressort 30 sur la bille 29 est négligée.

Q.1 / Faire l'inventaire des actions mécaniques extérieures agissant sur le doigt rep 27, tracer en bleu sur le schéma les éléments connus ci-dessous :

N.B.: Indiquer par [?] les inconnues.

/ 3 pts

Forces extérieures/27	Point d'application	Direction	Sens	Intensité en N


2.2 / Enoncer le	principe fondament	tal de la statique ap	opliqué au doigt en	équilibre.

/ 2 pts

RINCEUSE - EGOUTEUSE	
Roue +Bras Prise de Bouteilles	D.S.R. 13/14

Q.3 / Déterminer l'effort A17/27

- > Vous n'utilisez qu'une seule méthode de résolution :
 - Soit graphique
 - Soit par le calcul
- Résolution graphique

DYNAMIQUE

Echelle: 10mm pour 2 N

• Résolution par le calcul

Donnees : OA = 20 ; Oh= 52 ; Bh = 20	

REPONSE : | A17/27 | =

/ 5 pts

	RINCEUSE - EGOUTEUSE	
Dossier Sujet Réponses	Roue +Bras Prise de Bouteilles	D.S.R. 14/14

• Etude du tampon rep 16.

En fonction des résultats précédents, en déduire les efforts appliqués sur le tampon rep.16

Q.4 / Compléter le tableau d'inventaire des actions mécaniques sur le tampon rep. 16 qui favorisent sa déformation.

Actions mécaniques extérieures / 16	Direction	Sens	Intensité en N

Prévoir autant de lignes dans le tableau qu'il y a d'actions mécaniques à identifier

/ 3 pts

MAINTENANCE

Le remplacement du tampon rep. 16 nécessite le démontage partiel du bras.

Q.1 / Compléter la gamme de démontage ci-dessous en précisant les ordres de démontage :

Ordre N°	Actions	Ensembles monoblocs ou pièces à démonter	Outillage
1			

/ 2 pts

DOSSIER RESSOURCE

Code: 0206-PSP ST A

	RINCEUSE -EGOUTTEUSE	
Dossier Ressource		D.R. 1/1
	Roue + robinet injecteur	

Liaisons usuelles entre deux solides

Désignation	Mouveme	ents relatifs	Représentation plane		
-	Т	R	Symbole		
Liaison encastrement ou liaison fixe	: . 0	0			
Liaison pivot	0	1			
Liaison glissière	. 1	· · · · · · · · · · · · · · · · · · ·			
Liaison pivot glissant	1	1			
Liaison Hélicoïdale	1	1	dou C		
Telloudale	Con	jugués			
Liaison rotule ou sphérique	0	3	——		
Liaison appui plan	2	1			
Liaison linéaire rectiligne	2 . 2	2	\$ \ \		
Liaison ponctuelle	2	3	ou O		

Remarques :

- Les symboles des liaisons sont indépendants des solutions technologiques