BACCALAUREAT PROFESSIONNEL

MAINTENANCE des APPAREILS et EQUIPEMENTS MENAGERS et de COLLECTIVITES

Domaine E1 – Epreuve Scientifique et Technique MATHEMATIQUES ET SCIENCES PHYSIQUES

Durée : 2 heures Coefficient : 1,5

La calculatrice est autorisée.

Les documents à rendre avec la copie seront agrafés en bas de la copie par le surveillant sans indication d'identité du candidat.

Le sujet comporte 8 pages dont :

•	Page de garde	page 1/8
•	Formulaire de Mathématiques	page 2/8
•	Sujet de Mathématiques	pages 3/8 et 4/8
•	Annexes de Mathématiques	pages 5/8 et 6/8
•	Sujet de Sciences Physiques	pages 7/8 et 8/8

FORMULAIRE BACCALAUREAT PROFESSIONNEL Artisanat, Bâtiment, Maintenance - Productique

Fonction f	<u>Dérivée f'</u>
f(x)	f'(x)
ax + b	а
x^2	2x
x^3	$3x^2$
1	_ 1
\boldsymbol{x}	$\frac{1}{x^2}$
u(x) + v(x)	u'(x) + v'(x)
a u(x)	a u'(x)

Logarithme népérien : ln

$$\ln{(ab)} = \ln{a} + \ln{b}$$

$$\ln\left(a^{n}\right)=n\ln a$$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Equation du second degré $ax^2 + bx + c = 0$

$$\Delta = b^2 - 4ac$$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle

Si
$$\Delta \ge 0$$
, $ax^2 + bx + c = a(x - x_1)(x - x_2)$

Suites arithmétiques

Terme de rang 1 : u_1 et raison r

Terme de rang $n: u_n = u_1 + (n-1)r$

Somme des k premiers termes :

$$u_1 + u_2 + ... + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1: u_1$ et raison q

Terme de rang $n: u_n = u_l \cdot q^{n-l}$

Somme des k premiers termes :

$$u_1 + u_2 + ... + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Trigonométrie

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$

cos(a+b) = cosa cosb - sina sinb

 $\cos 2a = 2\cos^2 a - 1$

 $= 1 - 2 s \widetilde{m}^2 a$ $\sin 2a = 2 \sin a \cos a$

Statistiques

Effectif total
$$N = \sum_{i=1}^{p} n_i$$

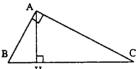
Moyenne
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Ecart type $\sigma = \sqrt{V}$

Relations métriques dans le triangle rectangle

$$AB^2 + AC^2 = BC^2$$



$$\sin \hat{B} = \frac{AC}{BC}; \cos \hat{B} = \frac{AB}{BC}; \tan \hat{B} = \frac{AC}{AB}$$

$$\frac{\text{Résolution de triangle}}{\frac{a}{\sin \widehat{A}} = \frac{b}{\sin \widehat{B}} = \frac{c}{\sin \widehat{C}} = 2R$$

R: rayon du cercle circonscrit

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$

Aires dans le plan

Triangle: $\frac{1}{3}bc\sin \hat{A}$

Trapèze : $\frac{1}{2}(B+b)h$

Disque : πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h : Volume Bh

Sphère de rayon R:

Volume : $\frac{4}{3}\pi R^3$ Aire: $4\pi R^2$

Cône de révolution ou pyramide de base B et de

hauteur h: Volume $\frac{1}{3}Bh$

Calcul vectoriel dans le plan - dans l'espace

$$\vec{v} \cdot \vec{v}' = xx' + yy'$$

$$\|\vec{v}\| = \sqrt{x^2 + y^2}$$

$$||\vec{v} \cdot \vec{v}| = xx' + yy' + zz'$$

$$||\vec{v}|| = \sqrt{x^2 + y^2 + z^2}$$

Si $\vec{v} \neq \vec{0}$ et $\vec{v}' \neq \vec{0}$:

$$\vec{v}.\vec{v}' = \|\vec{v}\| \times \|\vec{v}'\| \cos(\vec{v}, \vec{v}')$$

 $\vec{v} \cdot \vec{v}' = 0$ si et seulement si $\vec{v} \perp \vec{v}'$

Le thème de toute l'épreuve est l'étude de la porte « froide » d'un four à pyrolyse. Les 3 exercices de mathématiques et les 3 exercices de sciences sont tous indépendants.

MATHÉMATIQUES (13 points)

EXERCICE 1 (4 points): Etude d'une porte "froide"

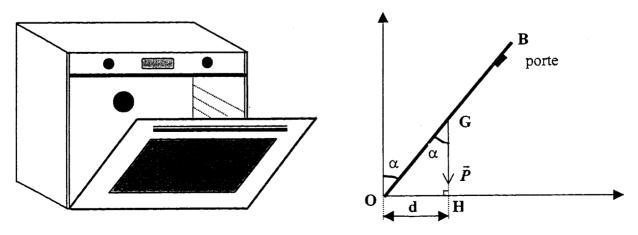
Le cahier de charges du four est le suivant :

- au début du chauffage, les températures intérieure et extérieure du four sont égales à 20°C.
- la température de la vitre extérieure de la porte doit être de 30°C pour une utilisation normale du four à 220°C.
- la température de la vitre extérieure de la porte doit être de 50°C lors d'une pyrolyse à 500°C. Ceci justifie le nom de « porte froide ».

La température intérieure du four y exprimée en °C est une fonction f de la température extérieure de la porte, x exprimé en °C.

- 1 Etude de la fonction f. On considère la fonction f définie par $f(x) = -0.2 x^2 + 30 x - 500$ sur l'intervalle [20; 50].
- 1.1 Soit f' la fonction dérivée de f. Déterminer f'(x).
- 1.2 Compléter le tableau de variation de la fonction f sur l'annexe 1 page 5.
- 1.3 Sur l'annexe 1, compléter le tableau de valeurs de f(x).
- 1.4 Dans le repère de l'annexe 1, tracer la courbe représentant la fonction f.
 - 2 Exploitation de la représentation graphique.
- 2.1 Placer sur la courbe les points suivants : D (20 ; 20) ; N (30 ; 220) ; P (50 ; 500)
- 2.2 En relation avec le cahier des charges mentionné au début de l'exercice, indiquer à quelles conditions d'utilisation correspondent les points D, N et P.

EXERCICE 2 (5 points): Etude du moment du poids de la porte.



Le moment ${\bf M}$ du poids de la porte est une fonction de l'angle α d'ouverture de la porte.

1. Détermination de M.

- 1.1 Le segment [OB] a pour longueur ℓ et pour milieu G. Le segment [OH] a pour longueur d. En utilisant le triangle OGH, déterminer l'expression de d en fonction de ℓ et de α .
- 1.2 L'intensité du poids de la porte est P = 30 N. La hauteur ℓ de la porte vaut 0,46 m. La valeur du moment \mathcal{M} est donnée par la relation : $\mathcal{M} = P$. d Déterminer l'expression de \mathcal{M} en fonction de α .
- 2. Etude d'une fonction.

Soit la fonction définie par $g(x) = 6.9 \sin x$ pour x appartenant à l'intervalle [0; 90]; x étant exprimé en degré.

- 2.1 Sur l'annexe 2 page 6, compléter le tableau de valeurs arrondies à 10^{-2} .
- 2.2 Dans le repère de l'annexe 2, représenter graphiquement la fonction g.
- 2.3 Déterminer la valeur maximale de g(x).
- 2.4 Déterminer graphiquement la valeur de x pour laquelle g(x) est égal aux $\frac{2}{3}$ de sa valeur maximale (on laissera apparaître les pointillés nécessaires à la construction).
- 2.5 Retrouver par le calcul cette valeur de x arrondie à l'unité.
- 3. En utilisant les résultats précédents, déterminer la mesure en degrés de l'angle α pour laquelle le moment \mathcal{M} est égal aux $\frac{2}{3}$ de sa valeur maximale.

EXERCICE 3 (4 points): Etude de la position du vitrage de la porte.

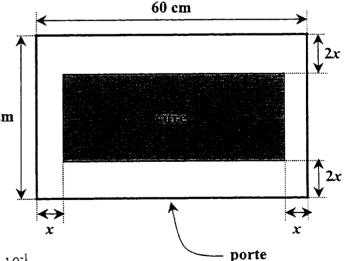
On utilisera le cm comme unité de longueur et le cm² comme unité d'aire.

1. Exprimer en fonction du nombre réel

positif x l'aire S du vitrage rectangulaire grisé sur le dessin.

2. On veut que l'aire de la surface vitrée soit égale à la moitié de l'aire de la surface totale de la porte.
46 cm
Montrer que x est solution de l'équation :

 $8x^2 - 332x + 1380 = 0$



3. Résolution de l'équation.

3.1 Résoudre l'équation et arrondir les solutions à 10⁻¹.

3.2 En tenant compte du schéma, choisir la solution convenable.

ANNEXE 1 (à rendre avec la copie)

Compléter le tableau de variation de la fonction f:

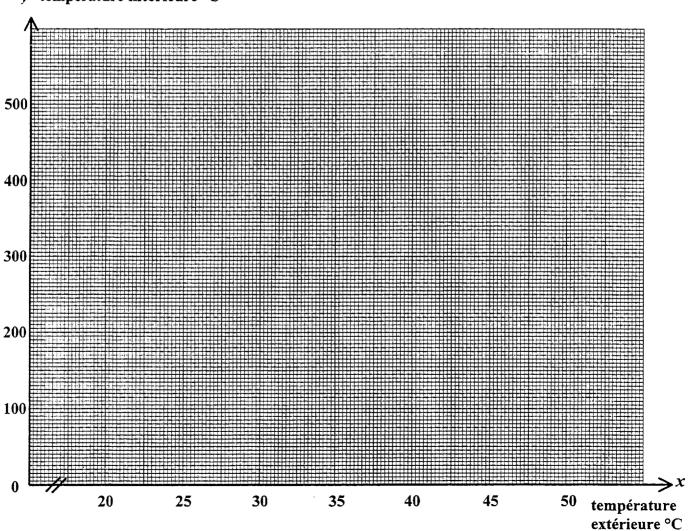
x	20	50
signe de $f'(x)$		
variation de f		

Compléter le tableau de valeurs de la fonction f :

x	20	25	30	35	40	45	50
f(x)			220				

Représentation graphique de la fonction f :

y température intérieure °C

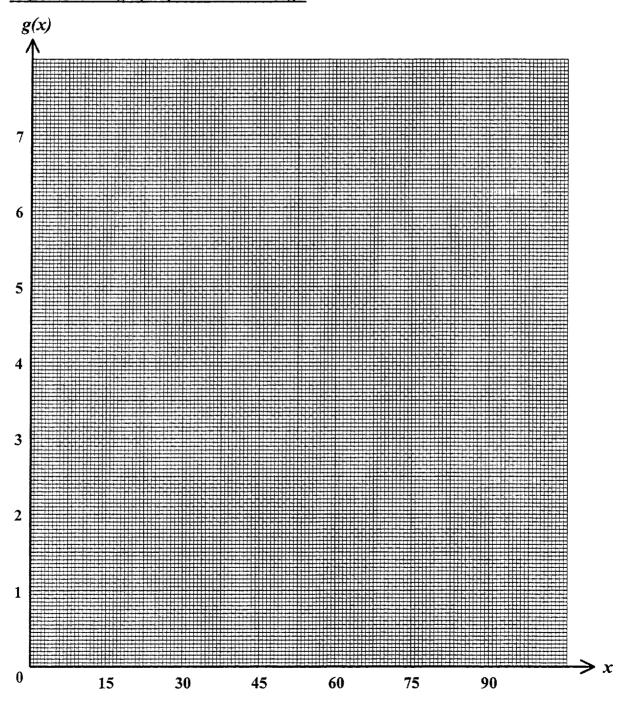


ANNEXE 2 (à rendre avec la copie)

Compléter le tableau de valeurs de la fonction g :

x.	0	15	30	45	60	75	90
g(x)							6,90

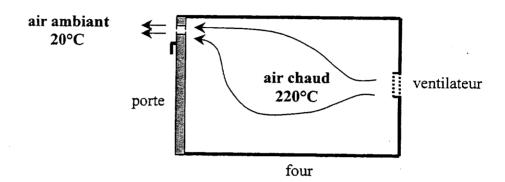
Représentation graphique de la fonction g :



SCIENCES PHYSIQUES (7 points)

EXERCICE 1: ventilation du four et dissipation de l'énergie thermique.

En fin d'utilisation, une ventilation permet de faire baisser rapidement la température intérieure du four, ceci a pur but de stopper la cuisson et de préserver les composants électriques. Le four a un volume utile de 53 L et la température intérieure en fonctionnement normal est de 220 °C.



- 1.1. Calculer au gramme près la masse d'air chaud dans le four sachant que la masse volumique de cet air chaud est $\rho = 0.72 \text{ kg/m}^3$.
- 1.2. Calculer l'énergie thermique apportée par cette masse d'air à 220°C lorsqu'elle est ventilée dans la pièce où l'air ambiant est à 20°C. La capacité thermique massique de l'air chaud est 1000 J/(kg.°C).
- 1.3. Le débit d'air du ventilateur est 126 L/min.
 - 1.3.1. Transformer ce débit en m³/s, arrondi à 10⁻⁴.
 - 1.3.2. L'évacuation de l'air chaud du four s'effectue en haut de la porte à travers une surface rectangulaire de longueur 45 cm et de largeur 2 cm. Calculer à 10⁻² m/s près la vitesse de sortie de cet air chaud à travers cette surface rectangulaire.

EXERCICE 2 : étude de la dilatation du quadruple vitrage de la porte lors de la pyrolyse.

Le principe de porte « froide » réside dans un quadruple vitrage. Une vitre de la porte est un rectangle dont l'aire, à la température de 0°C, est $S_0 = 1\,380~\text{cm}^2$. Le coefficient de dilatation linéique du verre est $\lambda = 1,5$. 10^{-5} (°C⁻¹) et pour une surface, le coefficient de dilatation "surfacique" est $\alpha = 2\lambda$.

- 2.1. Calculer, au cm 2 près, l'aire S_{50} de la vitre la plus extérieure quand sa température est de 50°C.
- 2.2. Calculer, au cm² près, l'aire S₅₀₀ de la vitre la plus intérieure quand sa température est de 500°C.
- 2.3. Quelle est, en cm², la dilatation (ou augmentation de surface) ΔS de la vitre la plus intérieure quand sa température varie entre les valeurs extrêmes : 0°C et 500°C?

EXERCICE 3: pyrolyse des résidus graisseux dans le four.

Les graisses et huiles présents dans le four sont constitués essentiellement de molécules de glycérol dont la formule brute est C₃H₈O₃. Pendant la pyrolyse, la porte du four est bloquée.

Masses molaires atomiques: M(C) = 12 g/mol; M(H) = 1 g/mol; M(O) = 16 g/mol

- 3.1. Le glycérol est un corps dont l'origine est un alcane comportant le même nombre d'atomes de carbone. Donner le nom, écrire la formule brute puis la formule semi-développée de cet alcane.
- 3.2. Calculer la masse molaire moléculaire du glycérol.
- 3.3. La pyrolyse transforme les résidus graisseux en carbone C et vapeur d'eau H_2O . Recopier, compléter et équilibrer l'équation bilan ci-dessous traduisant la pyrolyse du glycérol :

$$C_3H_8O_3 + O_2$$

- 3.4. Après la pyrolyse, on recueille dans le four 18 g de carbone. Quelle était la masse de glycérol présente avant la pyrolyse ?
- 3.5. L'opération de pyrolyse peut-elle être assimilée à une combustion complète ou à une combustion incomplète ? Expliquer brièvement la réponse.

Quelques formules pour les exercices de sciences physiques

$$\rho = \frac{m}{V}$$
 ; $W = m \cdot c \cdot \Delta \theta$

$$q = S \cdot v$$
 ; $S_{\theta} = S_0 (1 + \alpha \cdot \theta)$