BACCALAURÉAT PROFESSIONNEL AÉRONAUTIQUE MATHÉMATIQUES et SCIENCES PHYSIQUES

Coefficient : 2 Durée : 2 heures

Dans cette épreuve, l'usage des calculatrices est autorisé dans les conditions définies par la circulaire 99-186 du 16/11/99.

MATHÉMATIQUES (15 points)

EXERCICE 1 (5 points)

Suite à un atterrissage "un peu dur", on dépose les atterrisseurs principaux de l'avion afin de procéder à une inspection.

"L'arrondi" est la partie de la trajectoire suivie par l'avion juste avant le toucher ; cette partie de trajectoire est assimilée à un arc de cercle de rayon R.

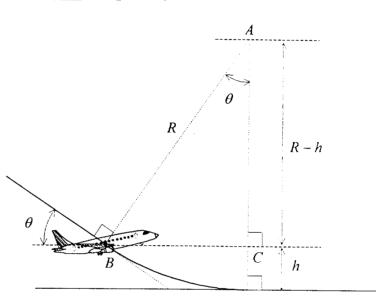
Au cours de cette phase, les conditions de vol étaient les suivantes :

- Masse de l'avion : M = 150 tonnes ;

- Hauteur: 10 m;

- Pente : 8 % soit tan $\theta = 0.08$;

- Vitesse : V = 65 m/s.



Le but de l'étude mathématique est de vérifier si les conditions de vol dans la phase d'atterrissage étaient conformes aux spécifications qui précisent que le facteur de charge $\eta = 1 + \frac{V^2}{R g}$ ne doit pas être supérieur à 1,2.

- 1. Calculer la valeur de l'angle θ arrondie à 0,01°.
- 2. Dans le triangle ABC exprimer R en fonction de h et de θ .
- 3. En utilisant la relation $R = \frac{h}{1 \cos \theta}$ calculer la valeur de R arrondie au mètre.
- 4. Calculer le facteur de charge au moment de l'atterrissage. Prendre g = 9,81 m/s ² et arrondir le résultat à 0,01.

L'atterrissage était-il conforme aux spécifications ?

0206-AER ST B

EXERCICE 2 (10 points)

Pour le convoyage d'un aéronef, on monte un réservoir provisoire supplémentaire de volume 6,28 m³. Ce réservoir cylindrique de rayon R (0,5 m $\leq R \leq 1,5$ m) de longueur L doit être réalisé en utilisant le moins de tôle possible.

Le but de l'exercice est donc de déterminer les dimensions du réservoir de façon que l'aire A de la surface de tôle soit minimale.

Dans tout le problème, on prendra $\pi = 3,14$.

- 1. Le développement du cylindre donne deux disques et un rectangle. Exprimer :
 - a) l'aire de chaque disque en fonction de R;
 - b) l'aire du rectangle en fonction de R et de L;
 - c) l'aire totale A en fonction de R et de L;
 - d) le volume V en fonction de R et de L.
- 2. a) Sachant que $V = 6,28 \text{ m}^3$, exprimer L en fonction de R.
 - b) En déduire l'expression de l'aire totale A de la surface de tôle à utiliser en fonction de R.
- 3. On considère la fonction f définie sur l'intervalle [0,5;1,5] par :

$$f(x) = 6.28 x^2 + \frac{12.56}{x}.$$

a) Calculer la dérivée f' de la fonction f puis montrer que f'(x) peut s'écrire sous la forme :

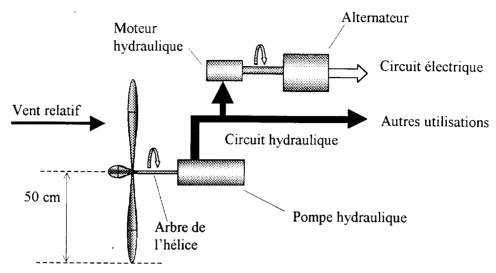
$$f'(x) = \frac{12,56(x-1)(x^2+x+1)}{x^2}.$$

- b) Le signe de f'(x) est celui de (x 1). Donner le signe de f'(x).
- c) Établir le tableau de variation de la fonction f.
- 4. a) De la question précédente déduire le valeur de R pour laquelle l'aire A est minimale.
 - **b)** Calculer la valeur de *L* correspondante.

SCIENCES PHYSIQUES (5 points)

Lors d'une panne moteur, l'énergie nécessaire pour actionner les commandes vitales de l'avion est assurée par la « R.A.T. » (Ram Air Turbine).

L'hélice de la R.A.T., qui tourne grâce au vent relatif, entraîne une pompe hydraulique.



I. Étude mécanique

1. Pour des raisons techniques, la vitesse linéaire en bout de pales d'hélice ne doit pas être supérieure à 300 m/s (vitesse du son dans les conditions de vol).

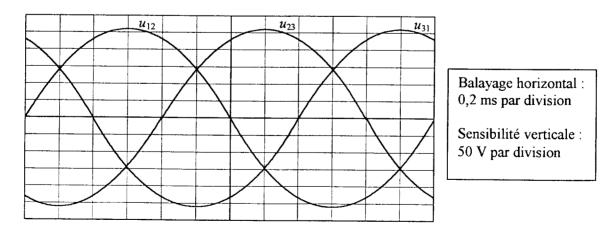
Calculer la vitesse maximale de rotation de l'arbre de l'hélice en tours par minute.

Formule : $v = \pi D n$

2. À cette vitesse, le moment du couple fourni par l'arbre de l'hélice à la pompe est de 42 N.m. Déterminer la puissance mécanique fournie par l'hélice.

II. Étude électrique

La pompe hydraulique permet de faire tourner un alternateur triphasé. On se propose de déterminer les tensions fournies à l'aide de l'oscillogramme ci-dessous :



0206-AER ST B

- 1. Déterminer la période T, la fréquence f et la valeur maximale U_{\max} de l'une des tensions composées.
- 2. Déterminer le déphasage φ entre la tension u_{12} et la tension u_{23} .
- 3. Quelle est la valeur efficace U de l'une des tensions composées ?

FORMULAIRE DE MATHÉMATIQUE DU BACCALAURÉAT PROFESSIONNEL

Secteur industriel : Artisanat, Bâtiment, Maintenance-Productique (Arrêté du 9 mai 1995 - BO spécial n°11 du 15 juin 1995)

Fonction f	<u>Dérivée</u> f'
f(x)	f'(x)
ax + b	a
x^2	2 x
x^3	$3 x^2$
l	1
_ x	$-\frac{1}{x^2}$
u(x) + v(x)	
	u'(x) + v'(x)
a u(x)	au'(x)

Logarithme népérien : ln

$$\ln (a b) = \ln a + \ln b$$

$$\ln\left(a^{n}\right)=n\ln a$$

$$\ln\left(\frac{a}{b}\right) = \ln a - \ln b$$

Équation du second degré $a x^2 + b x + c = 0$ $\Delta = b^2 - 4 a c$

- Si $\Delta > 0$, deux solutions réelles :

$$x_1 = \frac{-b + \sqrt{\Delta}}{2a}$$
 et $x_2 = \frac{-b - \sqrt{\Delta}}{2a}$

- Si $\Delta = 0$, une solution réelle double :

$$x_1 = x_2 = -\frac{b}{2a}$$

- Si Δ < 0, aucune solution réelle Si $\Delta \ge 0$, $a x^2 + b x + c = a (x - x_1) (x - x_2)$

Suites arithmétiques

Terme de rang $1:u_1$ et raison : r

Terme de rang $n: u_n = u_1 + (n-1) r$

Somme des k premiers termes :

$$u_1 + u_2 + \dots + u_k = \frac{k(u_1 + u_k)}{2}$$

Suites géométriques

Terme de rang $1:u_1$ et raison : q

Terme de rang $n: u_n = u_1 q^{n-1}$

Somme des k premiers termes:

$$u_1 + u_2 + \dots + u_k = u_1 \frac{1 - q^k}{1 - q}$$

Trigonométrie

 $\sin(a+b) = \sin a \cos b + \sin b \cos a$

 $\cos(a+b) = \cos a \cos b - \sin a \sin b$

$$\cos 2a = 2\cos^2 a - 1$$

$$= 1 - 2 \sin^2 a$$

 $\sin 2a = 2 \sin a \cos a$

Statistiques

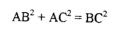
Effectif total
$$N = \sum_{i=1}^{p} n_i$$

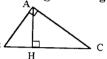
Moyenne
$$\bar{x} = \frac{\sum_{i=1}^{p} n_i x_i}{N}$$

Variance
$$V = \frac{\sum_{i=1}^{p} n_i (x_i - \bar{x})^2}{N} = \frac{\sum_{i=1}^{p} n_i x_i^2}{N} - \bar{x}^2$$

Exact type $\sigma = \sqrt{V}$

Relations métriques dans le triangle rectangle





$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Résolution de triangle

$$\frac{\hat{a}}{\sin A} = \frac{\hat{b}}{\sin B} = \frac{\hat{c}}{\sin C} = 2R$$
R: rayon du cercle circonscrii

R: rayon du cercle circonscrit $a^2 = b^2 + c^2 - 2bc \cos \hat{A}$

Aires et plan

Triangle: $\frac{1}{2}b c \sin \hat{A}$

Trapèze : $\frac{1}{2}(B+b)h$

Disque: πR^2

Aires et volumes dans l'espace

Cylindre de révolution ou prisme droit d'aire de base B et de hauteur h : Volume B h Sphère de rayon R:

Volume: $\frac{4}{3}\pi R^3$ Aire: $4 \pi R^2$

Cône de révolution ou pyramide de base B et de

hauteur h: Volume $\frac{1}{3}Bh$

Calcul vectoriel dans le plan – dans l'espace

$$|v| = xx' + yy$$

$$|v| = \sqrt{x^2 + y^2}$$

$$|\vec{v}| = \sqrt{x^2 + y^2}$$
 $|\vec{v}| = \sqrt{x^2 + y^2}$
 $|\vec{v}| = \sqrt{x^2 + y^2 + z^2}$

Si $\vec{v} \neq \vec{0}$ et $\vec{v}' \neq \vec{0}$:

$$\vec{v} \cdot \vec{v'} = ||\vec{v}|| \times ||\vec{v'}|| \cos(\vec{v}, \vec{v'})$$

 $\vec{v} \cdot \vec{v}' = 0$ si et seulement si $\vec{v} \perp \vec{v}'$