BACCALAUREAT PROFESSIONNEL EQUIPEMENTS ET INSTALLATIONS ELECTRIQUES

Epreuve de TECHNOLOGIE

E2

ETUDE D'UN AVANT PROJET

DOSSIER TECHNIQUE

TABLEAUX DE DISTRIBUTION HTA à appareillage fixe

GAMME FLUOKIT M: tableaux modulaires (GEC ALSTHOM)

■ Choix des cellules

Fonction	Départ protection par interrupteur fusibles combinés	Mesure et comptage moyenne tension	Protection générale à départ barres par disjoncteur	Protection générale à départ câbles par disjoncteur		
Schéma				→		
Désignation cellule	PFA	ТМ	PGB	PGC		
Appareil de coupure ou d'isolement	Interrupteur	Sectionneur	Disjoncteur Sectionneurs	Disjoncteur Sectionneur		
Intensité nominale (A)	suivant fusibles	200	400 – 630 – 1250	400 – 630 – 1250		

■ Choix des cellules

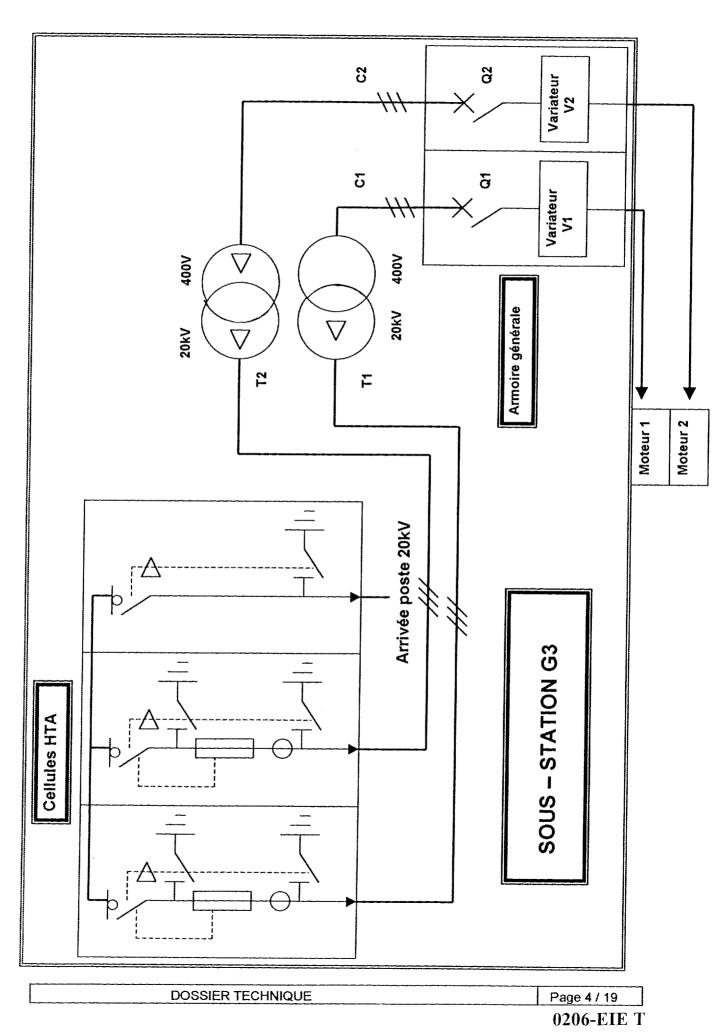
Fonction	Arrivée ou Départ par interrupteur	Alimentation en double dérivation	Remontée barres ou Arrivée directe	Départ protection par interrupteur fusibles associés		
Schéma	⊗ #	→ → → → → → → → → → → → → → → → → → →	⊗-H	→		
Désignation cellule	IS	DD	LR ou LST	PF		
Appareil de coupure ou d'isolement	Interrupteur	Interrupteurs		Interrupteur		
intensité nominale (A)	400 - 630	400 – 630 – 1250	400 - 630 - 1250	suivant fusibles		

MOTORISATION

CARACTERISTIQUES REQUISES POUR CHAQUE MOTEUR

Marque	THRIGE
Moment du couple	23000 N.m
Vitesse nominale	220 min ⁻¹
Puissance	500kW
Tension d'induit nominale	440V =
Tension d'excitation	190V =
Courant d'excitation	18,6A
Surcouple admissible sur l'arbre	12 CN (4CN 1 ^{er} moteur du tandem 8CN pour le second)
Protection	IP 55
Isolation	Н
Durée de vie des balais	3000h, dépendant du régime et des conditions ambiantes
Périodicités d'entretien * Filtres	750h
* Turbines ventilateurs et batterie de refroidissement	8000h
Refroidissement	hydroréfrigérant monté sur le côté du moteur Débit : 14m³ /h
Température maximum eau refroidissement	Minimum : - 10° C Maximum : +28° C

DOSSIER TECHNIQUE	
DOSSIER JECHNIQUE	Dogg 2 / 40
	Page 2 / 19


Moteurs à courant continu LAKC 6560 D

	Vit	esse de ro	otation n (min ⁻¹) p	our tensio	n d'induit	U			Vitesse	Ind	
Р	440	460	500	550	600	700	750	I	М	Max.	Résis- Tance	Induc- tance
kW								Α	Nm	min-1	Ω	mH
442 455 515 575 630 750 805	180	190	210	235	260	310	335	1180 1180 1180 1180 1180 1180 1180	23451 23423 23420 23367 23140 23105 22949	405 430 530 580 680 680 680	0,0487 0,0487 0,0487 0,0487 0,0487 0,0487 0,0487	1,04 1,03 1,01 0,99 0,98 0,96 0,95
482 510 560 620 685 810 875	200	210	230	255	280	335	360	1270 1270 1270 1270 1270 1270 1270	23016 23193 23252 23220 23363 23091 23212	480 505 630 680 680 680 680	0,0416 0,0416 0,0416 0,0416 0,0416 0,0416 0,0416	0,87 0,86 0,86 0,85 0,84 0,82 0,82
530 560 615 680 750 885 955	220	230	255	280	310	365	395	1380 1380 1380 1380 1380 1380 1380	23007 23252 23032 23193 23105 23155 23089	400 425 475 525 575 600 600	0,0353 0,0353 0,0353 0,0353 0,0353 0,0353 0,0353	0,72 0,72 0,71 0,71 0,70 0,69 0,69
575 605 660 735 805 950 1030	235	250	275	305	335	395	425	1470 1470 1470 1470 1470 1470 1470	23367 23111 22920 23014 22949 22958 23145	460 485 535 610 610 610	0,0296 0,0296 0,0296 0,0296 0,0296 0,0296 0,0296	0,64 0,63 0,62 0,61 0,61 0,60 0,60
625 655 720 800 875 1040 1120	255	265	290	325	355	420	455	1600 1600 1600 1600 1600 1600	23407 23605 23710 23508 23539 23648 23508	530 555 605 680 680 680 680	0,0270 0,0270 0,0270 0,0270 0,0270 0,0270 0,0270	0,54 0,54 0,54 0,53 0,53 0,52 0,52
640 675 740 820 900 1060 1140	275	290	315	350	385	455	490	1630 1630 1630 1630 1630 1630 1630	22225 22228 22436 22374 22325 22248 22218	635 685 710 710 710 710 710	0,0246 0,0246 0,0246 0,0246 0,0246 0,0246 0,0246	0,49 0,49 0,49 0,48 0,48 0,47 0,47
715 750 820 910 995 1180 1270	300	315	345	380	420	495	530	1800 1800 1800 1800 1800 1800 1800	22761 22738 22699 22670 22624 22766 22884	720 720 720 720 720 720 720 720	0,0205 0,0205 0,0205 0,0205 0,0205 0,0205 0,0205	0,41 0,41 0,40 0,40 0,40 0,39 0,39

DOSSIER TECHNIQUE

Page 3 / 19

GEC ALSTHOM

Transformateurs immergés de 100 à 2500 kVA

■Caractéristiques électriques

■ Tension la plus élevée du réseau 7,2 kV ≤ 24 kV / Tension secondaire à vide 410V

Puissance assign	ée		kVA	100	160	250	400	630	800	1000	1250	1600	2000	2500
Pertes à vide			W	210	460	650	930	1300	1220	1470	1800	2300	2750	3350
Pertes dues à la	charge		W	2150	2350	3250	4600	6500	10700	13000	16000	20000	25500	32000
Tension de court-	circuit	Ucc	%	4	4	4	4	4	6	6	6	6	6	6
Courant assigné		In	A	140,8	225,3	352	563,3	887,1	1126,5	1408,2	1760,2	2253,1	2816,3	3520,4
Courant de court-	circuit	lcc	Α	3520	5633	8801	14082	22179	18776	23470	29337	37551	46939	58674
Courant à vide		lo	%	1,8	2,0	1,9	1,8	1,7	1,7	1,3	1,6	1,5	1,5	1,4
Puissance réactiv	e à vide		kVar	1,8	3,2	4,7	7,1	10,6	13,5	12,9	19,9	23,9	29,9	34,8
à compenser	à pleine charge		kVar	5,2	9,1	14,2	22,5	35,0	60,3	71,5	93,2	117,8	147,1	181,4
Chute de tension	cos φ = 1		%	2,21	1,54	1,37	1,22	1,11	1,51	1,47	1,45	1,42	1,45	1,45
à pleine charge	cos φ= 0,8	. ——	%	3,75	3,43	3,33	3,25	3,17	4,65	4,63	4,62	4,60	4,61	4,62
			harge 50%	98,53	98,71	98,84	98,97	99,08	99,04	99,06	99,08	99,10	99,10	99,10
	cos φ =1		harge 75%	98,14	98,54	98,70	98,84	98,96	98,81	98,84	98,86	98,88	98,8	7 98,87
Rendements			harge 100%	97,69	98,27	98,46	98,64	98,78	98,53	98,57	98,60	98,63	98,6	1_98,61_
en %		C	charge 50 %	98,17	98,39	98,56	98,72	98,85	98,80	98,83	98,85	98,87	98,8	7 98,88
	cos φ= 0,8		harge 75%	97,69	98,18	98,37	98,56	98,71	98,51	98,56	98,58	98,61	98,60	98,60
·			harge 100%	97,13	97,85	98,09	98,30	98,48	98,17	98,22	98,25	98,29	98,27	98,26
Puissance Acous	tique	LWA	A dB (A)	49	62	65	68	70	67	68	70	71	74	76

■ Tension la plus élevée du réseau 36 kV / Tension secondaire à vide 410V

Puissance assign	ée		kVA	100	160	250	400	630	800	1000	1250	1600	2000	2500
Pertes à vide			W	380	530	750	1050	1400	1640	1900	2500	2900	3430	3870
Pertes dues à la	charge		W	2340	-3330	4230	6210	8820	10800	13000	16000	19200	23800	29400
Tension de court-	círcuit	Ucc	%	4,5	4,5	4,5	4,5	4,5	5	5,5	6	6,5	7	7,5
Courant assigné		In	Α	140,8	225,3	352,0	563,3	887,1	1126,5	1408,2	1760,2	2253,1	2816,3	3520,4
Courant de court-	circuit	lcc	Α	3129	5007	7823	12517	19714	22531	25603	29337	34663	40233	46939
Courant à vide		lo	%	4,4	3,9	3,5	3,2	2,9	2,8	2,7	2,5	2,2	2,1	1,9
Puissance réactiv	e à vide		kVar	4,4	6,2	8,7	. 12,8	18,2	22,3	26,9	31,1	35,1	41,9	47,3
à compenser	à pleine charge		kVar	8,2	12,6	19,1	29,7	45,2	60,9	80,4	104,4	137,3	179,8	232,5
Chute de tension	cos φ = 1		%	2,41	2,16	1,78	1,64	1,49	1,47	1,44	1,45	1,40	1,43	1,45
à pleine charge	cos φ= 0,8		%	4,19	4,08	3,88	3,81	3,72	4,01	4,31	4,62	4,89	5,21	5,52
		cha	rge 50%	98,11	98,33	98,57	98,72	98,87	98,93	98,98	98,97	99,05	99,07	99,11
	cos φ = 1	<u>cha</u>	rge 75%	97,79	98,04	98,36	98,51	98,67	98,73	98,79	98,79	98,87	98,89	98,92
Rendements		cha	rge 100%	97,35	97,64	98,05	98,22	98,40	98,47	98,53	98,54	98,64	98,66	98,69
en %		cha	rge 50 %	97,64	97,92	98,22	98,40	98,59	98,66	98,73	98,72	98,81	98,84	98,89
	cos φ= 0,8	chai	rge 75%	97,25	97,56	97,96	98,14	98,34	98,42	98,49	98,49	98,59	98,62	98,66
		chai	rge 100%	96,71	97,07	97,57	98,78	98,01	98,09	98,17	98,18	98,30	98,33	98,36
Puissance Acous	tique	LWA	4 dB (A)	55	61	64	67	69	72	73	74	76	77	79

	
DOSSIER TECHNIQUE	Page 5 / 19

section des conducteurs de phase

Les tableaux figurant ci-dessous et ci-contre permettent de déterminer la section des conducteurs de phase d'un circuit.

Ils ne sont utilisables que pour des canalisations non enterrées et protégées par disjoncteur.

Pour obtenir la section des conducteurs de phase, il faut :

- déterminer une lettre de sélection qui dépend du conducteur utilisé et de son mode de pose
- déterminer un coefficient K qui caractérise l'influence des différentes conditions d'installation.

Ce coefficient K s'obtient en multipliant les trois facteurs de correction, K1, K2 et K3:

☐ le facteur de correction K1 prend en compte le mode de pose

 le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte

le facteur de correction K3 prend en compte la température ambiante et la nature de l'isolant.

lettre de sélection

40 00100(10)	'8	
type d'éléments conducteurs	mode de pose	lettre de sélection
conducteurs et câbles multiconducteurs	 sous conduit, profilé ou goulotte, en apparent ou encastré sous vide de construction, faux platond sous caniveau, moulures, plinthes, chambranles en apparent contre mur ou plafond sur chemin de câbles ou tablettes non perforées 	В
câbles multiconducteurs	■ sur échelles, corbeaux, chemin de câbles perforé ■ fixés en apparent, espacés de la paroi ■ câbles suspendus	E
câbles monoconducteurs	 sur échelles, corbeaux, chemin de câbles perforé tixés en apparent, espacés de la paroi câbles suspendus 	F

facteur de correction K1

lettre de sélection B	cas d'instatlation câbles dans des produits encastrés directement dans des matériaux thermiquement isolants	K1 0,70
	■ conduits encastrés dans des matériaux thermiquement isolants	0,77
	a câbles multiconducteurs	0,90
c	vides de construction et caniveaux	0,95
B, C, E, F	pose sous platond autres cas	0,95
	and the second s	1

facteur de correction K2

lettre de	disposition des	facteur de correction K2												
sélection	câbles jointifs	nom	bre d	e circ	uits c	u de	câble	s mu	tticon	duct	PHILE			-
5.0		1	2	3	4	5	6		8	9			20	
B, C	encastrés ou noyés dans les parois	1,00	0,80	0,70	0.65	0.60	0.57	0.54	0.52	0.50	0.45	0.41	0,38	
С	simple couche sur les murs ou les planchers ou tablettes non perforées	í	1 .					l			I		10,38	
	simple couche au plafond	1,00	0.85	0,79	0,75	0,73	0,72	0,72	0,71	0,70	0,70			
E, F	simple couche sur des tablettes horizontales perforées	0,95	0,81	0,72	0,68	0,66	0,64	0,63	0,62	0,61	0,61			
-, .	ou tablettes verticales sur des tablettes	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	0,72			
	simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0,87	0.82	0.80	0.80	0.79	0.79	0.78	0.78	0.79			
Lorsque les ca	ables sont disposés on plusious souther and					-,1	21, 01	V,, J	0,701	0,10	0,70			

Lorsque les câbles sont disposés en plusieurs couches, appliquer en plus un facteur de correction de :

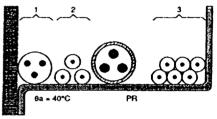
- 0,80 pour deux couches
- 0,73 pour trois couches
- 0,70 pour quatre ou cinq couches

facteur de correction K3

températures	isolation		
ambiantes (°C)	élastomère (caoutchouc)	polychlorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)
10	1,29	1,22	1.15
15	1,22	1,17	1.12
20	1,15	1,12	1.08
25	1,07	1,07	1,04
30	1,00	1,00	1,00
35	0.93	0.93	0.96
40	0,82	0.87	0.91
45	0,71	0.79	— — — — — — — — — — — — — — — — — — —
50	0,58	0.71	0,87
55		0,61	0,82
60		0.50	0,76
	J	10,50	0,71

DOSSIER TECHNIQUE				

Détermination de la section minimale


		isola	nt et no	mbre de	condu	cteurs o	hargés	(3 ou 2) /	
			tchouc			e ou PF				
lettre de	В	PVC:	PVC2		PR3	T	PR2		T	T
sélection	С		PVC3		PVC2	PR3		PR2		
	E			PVC3	1	PVC2	PR3	L	PR2	
	F			L	PVC3		PVC2	PR3		PR2
section	1,5	15,5	17,5	18,5	19,5	22	23	24	26	
cuivre	2,5	21	24	25	27	30	31	33	36	
(mm²)	4	28	32	34	36	40	42	45	49	
	6	36	41	43	48	51	54	58	63	1
	10	50	57	60	63	70	75	80	86	
	16	68	76	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	168	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	278	298	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150		299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400					656	754	825		940
	500					749	868	946		1 083
	630					855	1 005	1 088		1 254
section	2,5	16,5	18,5	19,5	21	23	25	26	28	<u> </u>
aluminium	4	22	25	26	28	31	33	35	38	1
(mm²)	6	28	32	33	36	39	43	45	49	
	10	39	44	46	49	54	59	62	67	
	16	53	59	61	66	73	79	84	91	<u> </u>
	25	70	73	78	83	90	98	101	108	121
	35	86	90	96	103	112	122	126	135	150
	50	104	110	117	125	136	149	154	164	184
	70	133	140	150	160	174	192	198	211	237
	95	161	170	183	195	211	235	241	257	289
	120	186	197	212	226	245	273	280	300	337
	150	 	227	245	261	283	316	324	346	389
	185	1	259	280	298	323	363	371	397	447
	240		305	330	352	382	430	439	470	530
	300		351	381	406	440	497	508	543	613
	400	L		1		526	600	663		740
	500					610	694	770		856
	630	LL		l		711	808	899		996

Exemple

Un câble PR triphasé est tiré sur un chemin de câbles perforé, jointivement avec 3 autres circuits constitués:

- d'un câble triphasé (1^{er} circuit)
- de 3 câbles unipolaires (2º circuit)
- de 6 cables unipolaires (3º circuit) : ce circuit est constitué de 2 conducteurs par phase.

Il y aura donc 5 groupements triphasés. La température ambiante est de 40 °C. Le câble PR véhicule 23 ampères par phase.

La lettre de sélection donnée par le tableau correspondant est E. Le facteur de correction K1, donné par le tableau correspondant, est 1. Le facteur de correction K2, donné par le tableau correspondant, est 0,75. Le facteur de correction K3, donné par le tableau correspondant, est 0,91. Le coefficient K, qui est K1 x K2 x K3, est

INTENSITE FICTIVE:

donc 1 x 0,75 x 0,91 soit 0,68.

l'z = lz / k

Longueur maximale d'un circuit en schéma IT

* Le conducteur neutre n'est pas distribué

$$Lmax = \frac{0.8 \times U \times Sph}{2\rho \times (1+m) \times Im}$$

* Le conducteur neutre est distribué

Lmax=
$$\frac{0.8 \times V \times S1}{2\rho \times (1+m) \times Im}$$

Signification des symboles

Lmax : longueur maximale en mètres

V : tension simple
U : tension composée
Sph : section des phases en mm²
S1 : section du neutre en mm²

Spe : section du conducteur de protection en mm²

m Sph Spe

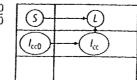
p : résistivité à la température de fonctionnement

normal

Cu =22,5.10⁻³ Ω x mm²/m Al =36. 10⁻³ Ω x mm²/m

Im courant (A) de fonctionnement du déclenchement magnétique du disjoncteur

DOSSIER TECHNIQUE


Page 7 / 19

CALCUL DES COURANTS DE COURT-CIRCUIT

tableau simplifié fournissant lcc en aval d'une canalisation, en fonction de lcc amont

cuivre section des pour conducteurs 230V/ de phase	longueur de la canalisation (en m)
400V (en mm²)	
2,5 4	0.8 1 1.3 1.6 3 6.5 8 9.5 13 16 32 1 1.3 1.6 2.1 2.6 5 10 13 16 21 26 50
6	0,8 1,7 2,1 2,5 3,5 4 8,5 17 21 25 34 42 85 1,3 2,5 3 4 5 6,5 13 25 32 38 50 65 120
10 16	0.8 1.1 2.1 4 5.5 6.5 8.5 11 21 42 55 65 85 110 210
25 35	1 1,3 1,6 2,1 2,6 5 10 13 16 21 26 50 100 130 160 210 260
70	11 2 1 27 3 4 5,5 11 21 27 32 40 55 110 210 270 320
95	1,5 3 3,5 4,5 6 7,5 15 30 37 44 60 75 150 300 370 0,9 1 2 4 5 6 8 10 20 40 50 60 80 100 200 400
120 150	0,9 1 1,1 1,3 2,5 5 6,5 7,5 10 13 25 50 65 75 100 130 250 0,8 1 1,1 1,2 1,4 2,7 5,5 7 8 11 14 27 55 70 80 110 140 270
<u>185</u> 240	1 1,1 1,3 1,5 1,6 3 6,5 8 9,5 13 16 32 65 80 95 130 160 320
300 2 x 120	1.5 1.7 1.9 2.2 2.4 5 9.5 12 15 19 24 49 95 120 150 190 240
2 x 150	1,7 1,9 2,2 2,5 2,8 5,5 11 14 17 22 28 55 110 140 170 220 280
2 x 185 3 x 120	2 2.3 2.6 2.9 3.5 6.5 13 16 20 26 33 65 130 160 200 260 330 2.3 2.7 3 3.5 4 7.5 15 19 23 30 38 75 150 190 230 300 380
3 x 150 3 x 185	2.5 2.9 3.5 3.5 4 8 16 21 25 33 41 80 160 210 250 330 410
lce amont	lec aval
(en kA) 100	94 94 93 92 91 83 71 67 63 56 50 33 20 17 14 11 9 5 24 2 10 10 10 10 10 10 10 10 10 10 10 10 10
90	85 85 84 83 83 76 66 62 58 52 47 32 20 16 14 11 9 4.5 2.4 2 1.6 1.2 1 0.5
80 70	67 67 66 66 65 61 55 52 49 45 41 29 18 16 14 11 9 4.5 2.4 2 1.6 1.2 1 0.5
60 50	58 58 57 57 57 54 48 46 44 41 38 27 18 15 13 10 8,5 4,5 2,4 1,9 1,6 1,2 1 0,5
40 35	39 39 39 39 39 37 35 33 32 30 29 22 15 13 12 9.5 8 4.5 2.4 1.9 1.6 1.2 1 0.5
30 25	36 29 29 29 28 27 26 25 24 23 19 14 12 11 9 7.5 4.5 2.3 1.9 1.6 1.2 1 0.5
20	20 20 20 20 20 19 19 18 18 17 17 14 11 10 9 7.5 6.5 4 2.2 1.8 1.5 1.2 1 0.5
15 10	15 15 15 15 15 15 15 14 14 14 13 13 12 9.5 8.5 8 7 6 4 2.1 1.8 1.5 1.2 0.9 0.5 10 10 10 10 10 10 9.5 9.5 9.5 9.5 9 8.5 7 6.5 6.5 5.5 5 3.5 2 1.7 1.4 1.1 0.9 0.5
<u>7</u>	7 7 7 7 7 7 7 7 65 65 65 6 55 5 5 5 45 4 29 18 16 13 11 09 05 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 5 6 5
4 3	4 4 4 4 4 4 4 4 4 4 4 3.5 3.5 3.5 3 3 2.9 2.2 1.5 1.3 1.2 1.1 0.8 0.4
2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 1.9 1.9 1.8 1.8 1.7 1.7 1.4 1.1 1 0.9 0.8 0.7 0.4
Alu section des	longueur de la canalisation (en m)
pour conducteurs 230V / de phase	iongueur de la canaissation (chi in)
400V (en mm²) 2,5	
4	0,8 1 1,3 1,6 3 6,5 8 9,5 13 16 32 1 1,3 1,6 2,1 2,6 5 10 13 16 21 26 50
6 10	0,8 1,6 2 2,4 3 4 8 16 20 24 32 40 80 1,3 2,6 3,5 4 5,5 6,5 13 26 33 40 55 65 130
16 25	0,8 1, 1 2,1 4 5,5 6,5 8,5 11 21 42 55 65 85 105 210 0,8 1 1,3 1,7 3,5 6,5 8,5 10 13 17 33 65 85 100 130 165 330
<u>35</u> 50	0.9 1.2 1.4 1.8 2.3 4.5 9 12 14 18 23 46 90 120 140 180 230
	0.9 1.8 2.3 2.8 3.5 4.5 9 18 23 28 37 46 90 180 230 280 370
120 150	0.8 1.7 3 4 4.5 6.5 8 17 32 40 47 65 80 160 320 400
185	0,9 1,7 3,5 4,5 5 7 8,5 17 34 43 50 70 85 170 340 0,9 1 2 4 5 6 8 10 20 40 50 60 80 100 240 400
240 300	0.9 1 1.1 1.3 2.5 5 6.5 7.5 10 13 25 50 65 75 100 130 250 0.9 1 1.2 1.4 1.5 3 6 7.5 9 12 15 30 60 75 90 120 150 300
2 x 120 2 x 150	0,9 1,1 1,3 1,4 1,6 3 6,5 8 9,5 13 16 32 65 80 95 130 160 320 1 1,2 1,4 1,5 1,7 3,5 7 9 10 14 17 35 70 85 100 140 170
2 x 185 2 x 240	1.2 1.4 1.6 1.8 2 4.1 8 10 12 16 20 41 80 100 120 160 200 1.5 1.8 2 2.3 2.5 5 10 13 15 20 25 50 100 130 150 200 250
3 x 120 3 x 150	1.4 1.7 1.9 2.1 2.4 4.5 9.5 12 14 19 24 48 95 120 140 190 240
3 x 185 3 x 240	1.8 2.1 2.4 2.7 3 6 12 15 18 24 30 60 120 150 180 240 300
	2,3 2,7 3 3,5 4 7,5 15 19 23 30 38 75 150 190 230 300 380 n de l'icc aval en fonction de l'icc amont, de la longueur et de la section de la canalisation, et pour une tension

évaluation de l'icc avail en fonction de l'icc amont, de la longueur et de la section de la canalisation, et pour une tension de 400 V triphasée (d'après guide C 15-105).

DOSSIER TECHNIQUE

Page 8 / 19

disjoncteurs Compact C801 à CM3200 fonctions et caractéristiques protection de la distribution BT

£,

CM2500 0000 3 88 2000 55 88 52 CM2000 25 00 5 8 3 I 2 2 2 2 2 2 2 CM1600 0000 888 50% 750 ≖ हुन्द्र श्र ≅ श्रुष्ट श्रुष्ट थ CM1250 50 85 55 10000 25 55 888 55 54 500 1250 C1251 8 4 8 20% 表 5 ²⁸ 20% 5 8 5 **エ**哀ちぬ8さ 400...1000 1000(1) 200 8 2 8 20% 35 52 53 ាំ និះ និន្ទន %05° **∓** 5 8 8 8 3 5 2 4 320..800 2.5 1.60 1.4 3000 550 8 4 8 440 V - In/2 440 V - In 690 V - In/2 690 V - In 220/240 V 380/415 V 440 V 500 V 660/690 V 125 V 250 V 500 V 750 V caractéristiques électriques selon CEI 947-2 et EN 60947-2. souvent sasigné (A) n 40 °C tension sasignée d'adement (Y) UI tension sasignée d'amploi (Y) Ump CA 5060 Hz canadon assignée d'amploi (Y) Ue 240 × 800 × déciencheur interchangeable courant de réglage CA 50/60 Hz CA 50/60 Hz caractéristiques électriques selon Nema AB1 pouvoir de coupure (kA) (% lcu) 8 --3 protection contre les surfinensités (A) déclencheur électronique intégré ST-CIA1/2/3 protection différentialle protection (voir pages suivantes) pouvoir de coupure ultime (kA eff) pouvoir de coupure de service catégorie d'emploi aptitude au sectionnement endurance (cycles F-C) disjoncteurs Compact

CM3200

25 25

125 85 50

125 85 50

(2)

10000

La gamme Compact comprend aussi un disjoncteur spécial pour les réseaux à 1000 V courant alternatif (voir page B39) et un disjoncteur C1251N DC pour les réseaux à courant continu (voir page B38).

installation et raccordement fixe prises avant fixe prises avant debrochable sur acce debrochable sur acce

dispositif additionnel Vigirefais Vigirex + tore + MX

DOSSIER TECHNIQUE

Page 9 / 19

accessoires d'installation et de raccordement

s et épanouisseurs -bornes et séparateurs de phases

cadres de face avant accessoires de raccordement verrouillage par cadenas ou serrure

dimensions et masses

nasse (kg)

commandes rotatives (directs, prolongés) Inverseur de source manuel/automatique

auxiliaires de commande

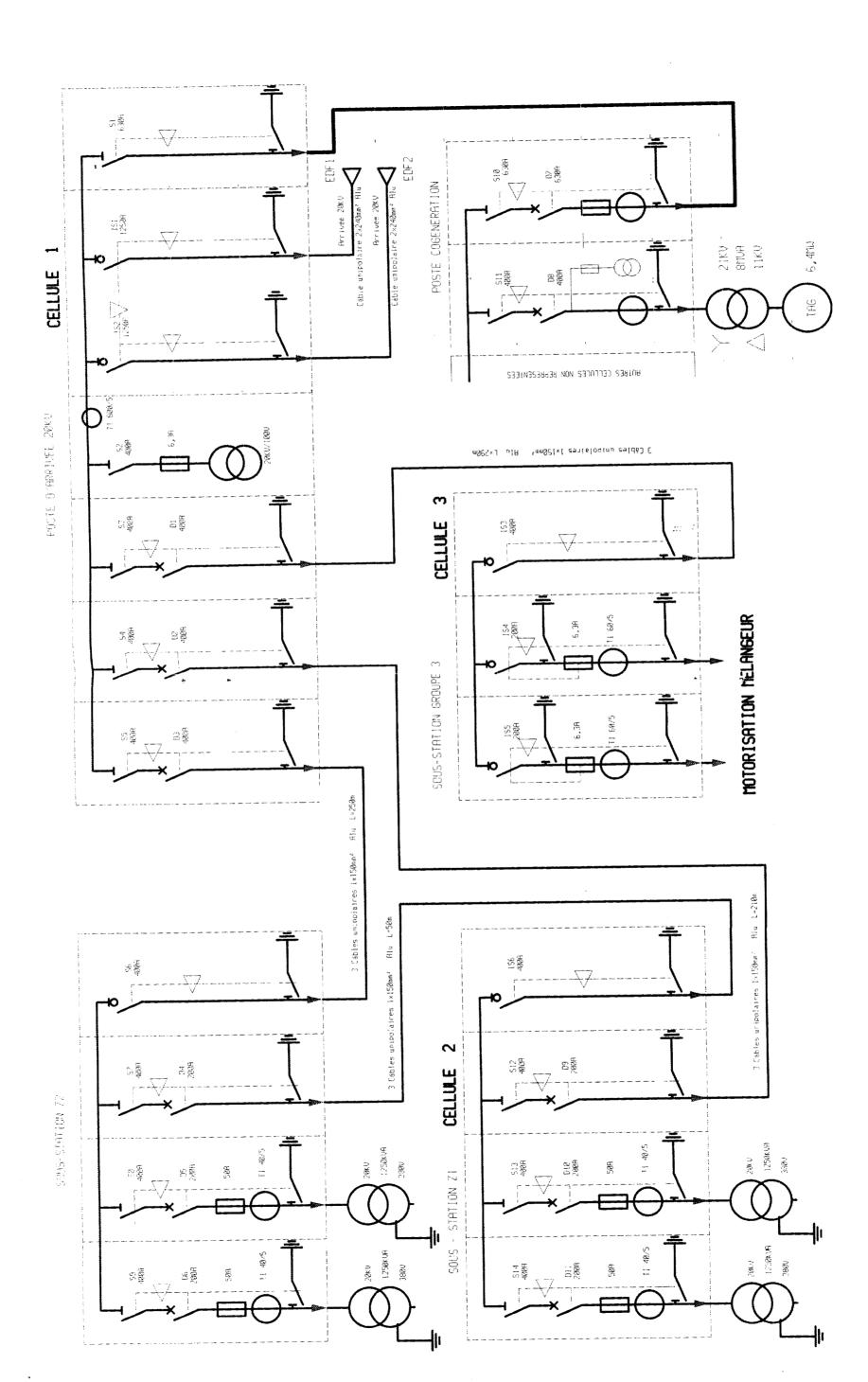
iéclencheurs suxillaires élécommande

auxiliaires de signalisation et mesure contects auxiliaires forctions associés aux déclenchaurs électroniques indicateur de présence de tension bloc transforméteur de courant bloc ampéremèteur de courant bloc ampéremète

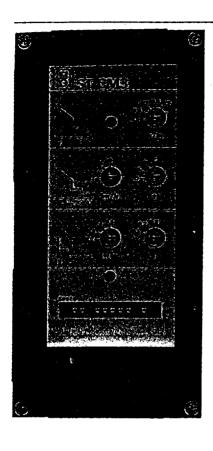
550 x 418 x 451

3 poles FPAV 4 poles FPAV 3 poles FPAV 4 poles FPAV

33


88

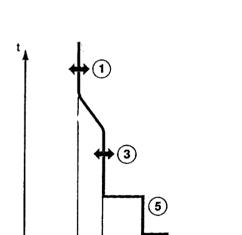
DOSSIER TECHNIQUE


0206-EIE T

DOSSIER TECHNIQUE

déclencheurs STCM1/2/3

pour Compact CM1250 à CM3200


courant de réglage (A) 1600 2000 2500 3200 630 100 1250 ST-CM1 ST-CM2 ST-CM3

Les ST-CM sont des déclencheurs électroniques pouvant équiper tous les disjoncteurs Compact CM. Ils sont alimentés par des tores inclus dans les disjoncteurs, et fonctionnent sans source extérieure. Les boutons de réglage sont accessibles en face avant. Trois déclencheurs sont proposés.

Déclencheur ST-CM1

Le déclencheur ST-CM1 offre les protections suivantes:

- protection long retard contre les surcharges à seuil réglable ① à 6 crans (0,5 à 1 x ln)
- protection court retard contre les courtscircuits à seuil réglable 3 à 4 crans (3 à 6 x lr)
- protection instantanée ⑤ contre les courts-circuits (35 kA).

ST-CM1: protection standard des circuits ST-CM2: protection sélective ST-CM3: protection sélective + protection « défaut terre ».

déclencheurs		ST-CM1	31	- <u>U [V] Z</u>			- ।	<u>- UN:</u>		
oour Compact	CM1250N/H à 3200N/H		-							
protection contre les su	rcharges (long retard)									
euil de déclenchement (A)	ir réglable (6 crans)	0,51 x ln	0.5	1 x ln			0.5	.1 x in		
emps de déclenchement (s)	à 1,5 lr	90160	90	160			90			
protection contre les coi	urts-circuits (court retard						\$ 10 m		. 1 5.4	
euil de déclenchement (A)	Im réglable (4 crans)	3-4-5-6 x lr	2-4	6 - 8 x	İr			-6-8x	lr	
	précision	± 20 %	± 15°	%			± 15	%		.,
emporisation	cran		0	A	В	C	0	A	В	C
	temps de surintensité		0	35	125	.225	0	35	125	225
	sans déclenchement (ms)			Ι						
	temps total de coupure (ma	s) 50	120	220	330	50	120	220	330	
protection contre les cou	ırts-circuits (instantanée	A STATE OF THE PARTY OF THE PAR								473
euil de déclenchement (kA)			35				35			
protection « défaut terre	» Free Park Street Street									
euil de déclenchement (A)	ih réglable (4 crans)						0.2-0	3-0.4-0	.5 x lr	
	précision						± 15			
emporisation (ms)	cran						0	0,1	0,2	0,3
	temps de surintensité						0	135	235	345
	sans déclenchement								1	1
	temps total de coupure						130	230	340	460
								1		1

VARIATEURS VNTC CEGELEC

Les variateurs ALSPA VNTC et WNTC sont des variateurs triphasés à thyristors pour moteur à courant continu. Exploitant les derniers progrès de la technologie, ces variateurs sont entièrement numériques et programmables par l'utilisateur.

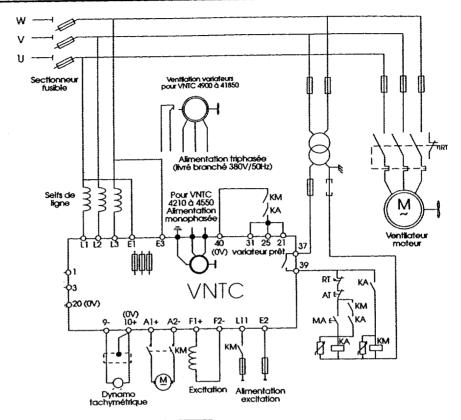
Les variateurs VNTC sont des variateurs triphasés pont simple (pont de Graëtz à 6 thyristors).

Les variateurs WNTC sont des variateurs triphasés réversibles (pont de Graëtz à 12 thyristors, montage tête bêche), permettant un bon fonctionnement dans les quatre quadrants du diagramme couple vitesse.

V/WNTC	U~ alimentation(V)	in (A)	lmax= 1,5ln/30s (A)	VENTILATION
4210	400	210	315	Forcée
4420	400	420	630	Forcée
4550	400	550	825	Forcée
4700	400	700	1050	Forcée
4825	400	825	1237	Forcée
4900	400	900	1350	Forcée
41200	400	1200	1800	Forcée
41850	400	1850	2775	Forcée
6900	690	900	1350	Forcée
61200	690	1200	1800	Forcée
61850	690	1850	2775	Forcée

<u>Nota</u>: Les variateurs VNTC et WNTC sont capables de surcharges temporaires de 1,5 In pendant 30s.

Tableau comparatif des différents montages redresseurs


Tableau de détermination des caractéristiques des différents montages redresseurs	Schéma des montages				X X X	\$\frac{444}{244}
Forme d'onde de la tension redressée	Relations entre les grandeurs					
Courant moyen redressé par diode	1 ₀ 1 _c	1	0,5	0,5	0,33	0,33
Courant efficace par diode	/ eff / c	1,57	0,786	0,786	0,577	0,577
Courant efficace ligne	I _∨ I _C	1,57	0,786	1,11	0,577	0,816
Valeur efficace du courant redressé	/ _C eff / _C	1,57	1,11	1,11	1,017	1,001
Courant crête répétitif par diode	/ _{FRM} / _C	3,14	1,57	1,57	1,21	1,05

Ic : Courant moyen dans la charge

DOSSIER TECHNIQUE	Danie 40 / 40
DOSSILK TECHNIQUE	Page 13 / 19 I

BRANCHEMENT DU VARIATEUR VNTC

Le schéma ci-dessous est un exemple d'utilisation et n'est pas limitatif.

BRANCHEMENT POUR NOTRE INSTALLATION

Puissance

- Bornes L1; L2; L3: Arrivée secteur 400V ~ sans self de ligne
- Bornes A1+; A2-: Induit du moteur à courant continu

Alimentation Synchronisation

- Bornes E1; E2; E3: alimentées en 380V~ à partir d'un autotransformateur 400V réglé à 380V en parfaite concordance de phase (E1 avec L1, E2 avec L2, E3 avec L3).

Les impulsions d'amorçage des thyristors du pont de la carte MDA3, étant fournies par le microprocesseur du variateur, sont synchronisées sur les mêmes phases de synchronisation que les circuits d'induit. Il est donc conseillé, afin d'éviter tout problème, d'utiliser un autotransformateur (400V Primaire , réglage à 380V).

Circuit d'excitation

- Les inducteurs du moteur ne seront pas branchés sur les bomes F1+ et F2- du variateur VNTC.

Ils seront alimentés par l'intermédiaire d'un variateur VAMEX 40-20A, lui-même branché à la sortie monophasée d'un autotransformateur 400V / 190V réglé à 190V~.

DOSSIER TECHNIQUE	Page 14 / 19
DOSSIER LECTIVIQUE	1 - 29

BRANCHEMENT DU VARIATEUR VNTC (suite)

Raccordement des bas niveaux

Borne 1 : non branchée

Borne 3 : entrée consigne vitesse analogique tension ou courant

paramétrable MENU 07 Entrées-sorties analogiques

Borne 20 : 0V

Borne 9 : Entrée mesure vitesse par dynamo tachymétrique (pôle négatif) Borne 10 : Entrée mesure vitesse par dynamo tachymétrique (pôle positif)

Les deux variateurs VNTC travailleront couplés en maître esclave, de façon à fournir les mêmes consignes vitesse .

Borne 13 du variateur 1 : sortie analogique ±10V sera reliée à la Borne 6 du variateur 2 : entrée analogique ± 10V.

MENUS DE PARAMETRAGE

MENU 02: Rampe vitesse

Registre 02-04 : accélération avant

Registre 02-05 : décélération

Plage de réglage 0 à1999 (1/10° de seconde) Ex : Si on désire une rampe d'accélération de 5s

valeur du réglage = temps / 0.1 = 5 / 0.1 = 50

Registre 02-13 : validation rampe accélération et décélération

* si ce bit = 0 rampe non utilisée = 1 rampe utilisée

MENU 03 : Mesure vitesse et régulateur

Registre 03-12 : sélection vitesse numérique / analogique

* si ce bit = 0 mesure analogique = 1 n

=1 numérique

Registre 03-13 : sélection dynamo tachymétrique / tension d'induit

* si ce bit = 0 dynamo tachymétrique = 1 tension d'induit

Registre 03-15: Tension d'induit

* plage de réglage de 0 à1000 ex : U = 600V réglage 600

MENU 04 : Traitement de la référence courant

Registre 04- 14 à 04-17 : Validation des quadrants de fonctionnement

* Pour VNTC 04 - 14 bit =1

04-15 à 04-17 bit =0

MENU 07 Entrées-sorties analogiques

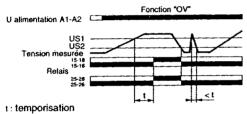
Registre 07-26 : sélection de consigne vitesse

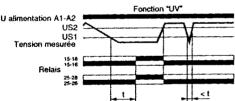
* si ce bit =0 = $0/\pm 10V$

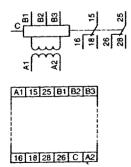
=1 = 0/20 ou 4/20mA

Registre 07-27 et 07-28 configuration de l'entrée analogique TB1.3 (généralement consigne vitesse) en boucle de courant 0/20, 20/0, 4/20, 20/4mA


Configuration	Bit 07.27	Bit 07-28
0-20mA	0	0
4-20mA	0	1
20-0mA	1	0
20-4mA	1	1


DOCOURS THE STATE OF THE STATE	
NOGGIED TECHNIQUE	1
DOSSIER TECHNIQUE	Page 15 / 19
	i made in/im i
	1 . 490 .07 10 1


RELAIS de mesure de tension RM3-UA103


RM3-UA1

Diagrammes fonctionnels

Fonctionnalités

Cet appareil est destiné à mesurer un dépassement de seuil de tension préréglé alternatif ou continu.

La surveillance s'applique en surtension ou sous-tension dans un domaine de mesure de 50 mV à 500 V (voir "Principe de fonctionnement").

Domaines d'application :

- contrôle de survitesse des moteurs fonctionnant en courant continu,
- surveillance de batteries,
- surveillance de réseaux alternatifs ou continus.

Présentation

Largeur 45 mm

- 1 Commutateur de sélection de plage de temporisation (0,05 à 1 s ou 1,5 à 30 s).
- 2 Réglage fin de la temporisation.
- 3 Réglage de l'hystérésis 5 à 30 % (1).
- 4 Réglage du seuil de tension.
- 5 Sélecteur de réglage de sous-tension (UV) ou de surtension (OV).
- R DEL jaune : indication d'état du relais.
- U DEL verte: indication de mise sous tension du RM3.

(1) Valeur de l'écart de tension entre enclenchement et déclenchement du relais de sortie (% de la tension de seuil à mesurer).

Principe de fonctionnement

La tension d'alimentation est appliquée sur les bornes A1 - A2. La tension à surveiller est appliquée sur les bornes B1, B2 ou B3 et C.

Appareil réglé en mesure de surtension (OV): si la tension est > au seuil de réglage US1, le relais de sortie s'enclenche avec ou sans temporisation. Lorsque la tension revient à une valeur US2 inférieure à ce seuil, en fonction du réglage de l'hystérésis, le relais déclenche instantanément.

Appareil réglé en mesure de sous-tension (UV) :si la tension est < seuil de réglage US1, le relais de sortie s'enclenche avec ou sans temporisation. Lorsque la tension revient à une valeur US2 supérieure à ce seuil, en fonction du réglage de l'hystérésis, le relais déclenche.

L'hystérésis est réglable entre 5 et 30% : surtension h = (US1 - US2) / US1, sous-tension h = (US2 - US1) / US1.

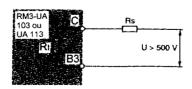
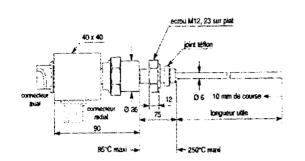

Un cycle de mesure ne dure que 80 ms, ce qui permet de saisir rapidement les modifications de tension.

Schéma et branchement du relais

A1- A2 Alimentation

B3-C tension à mesurer <500V 15-18 / 15-16 contact « OF» de sortie


25-26 / 25-28 contact « OF » de sortie

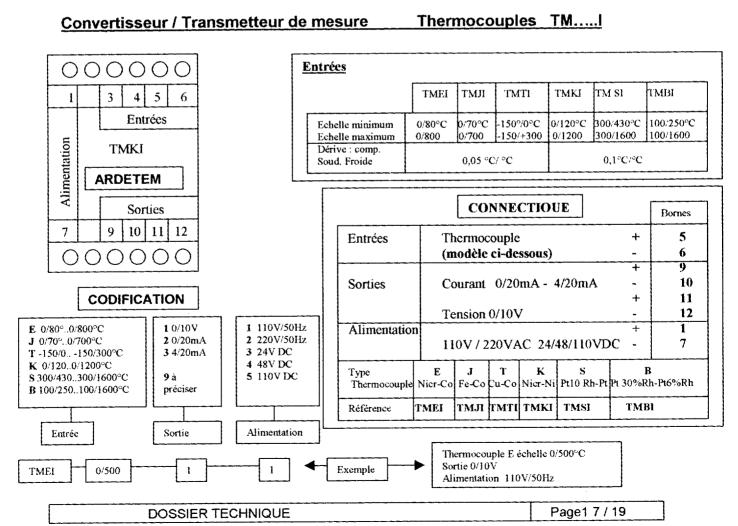
Nota: Les domaines de mesure peuvent être étendus au-delà de 500V par adjonction d'une résistance Rs sur le modèle RM3-UA103.

SONDE THERMOCOUPLE de palier

Capteur avec montage télescopique pour mesure de température des paliers de machines tournantes

. Gaine de protection : acier inox 316 L - Ø6 x0,5

. Sonde thermocouple chemisé J ou K suivant la norme DIN IEC 584

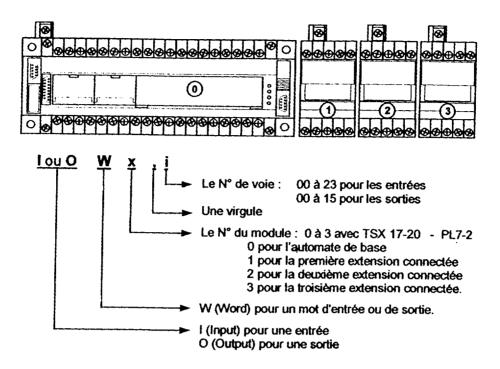

. Raccord M12 x 175 avec écrou et joint Téflon

. Sortie : axiale ou radiale pour embase JAEGER 3 contacts compensés (série standard) ou SOURIAU 7 contacts (série : 845)

Température d'utilisation : - 50 à +250° C

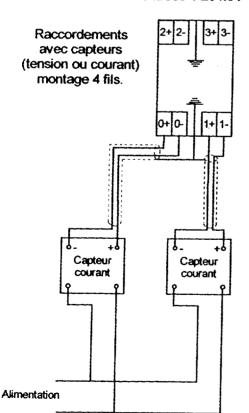
Tableau des références

Couple	J (Fe-Co)	Embase JAEGER standard comppensé	Couple	K (Nicr – NI)	Embase JAEGER Standard compensé
Type de montage	Longueur utile en mm	3 contacts simple couple	Type de montage	Longueur Utile en mm	3 contacts simple couple
	150	PAJJ 1501A		150	PAJK 1501A
AXIAL	300	PAJJ 3001A	AXIAL	300	PAJK 3001A
	600	PAJJ 6001A		600	PAJK 6001A
	150	PAJJ 1501R		150	PAJK 1501R
RADIAL	300	PAJJ 3001R	RADIAL	300	PAJK 3001R
	600	PAJJ 6001R		600	PAJK 6001R

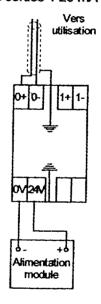

Débitmètres électromagnétiques

ALTOFLUX	IFM 1080 K	IFM 5080 K	IFM 4080 K
Champ magnétique	Champ continu commuté	Champ continu commuté	Champ continu commuté
Conductivité électrique	≥ 5 µS/cm (Eau ≥ 20 µS/cm)	≥ 5 µS/cm (Eau ≥ 20 µS/cm)	≥ 5 µS/cm (Eau ≥ 20 µS/cm)
Plage de débit (fin d'echelle)	190 Vh à 220 m³/h	6 J/h à 340 m³/h	85 l/h à 12 000 m³/h
Valeur de fin d'échelle	0,3 à 12 m/s 1 à 40 tt/s	0,3 à 12 m/s 1 à 40 ñ/s	0,3 à 12 m/s 1 à 40 ft/s
Diamètre nominai	DN 15 a 80, 14" a 3"	DN 2,5 à 100, 140" à 4"	DN 10 8 600, 16" à 24"
Tenue en pression	PN 40 ou 300 lbs	PN 40 ou 300 lbs	PN 40 ou 300 lbs
Températura du fluide	-10å+75°C	-60&+140°C	-60 à +140°C (PFA/PTFE)
Protection	19 66	1967	IP 67
Matériaux Tube de mesure/ revêtement intérieur	Polysulfone renforcé fibres de verre	Cortndon fritté (99,7 % Al ₂ O ₃)	DN 25 a DN 150: PFA DN ≥ 200: Néoprène, PTFE Iréthane, Ébonite, Caoutchouc tandre
Électrodes	hox1.4571	Platine	Inox 1.4571, Hastelloy B2 + C4, Titane, Tantale, Pletine
Sorties	0/4 è 00 mà entre suttres	0/4 à 20 mix entre gutres	0/4 à 20 mA entre autres
Courain	10 & 36 000 000 Imp/h, 24 V active ou collecteur ouvert	10 à 36 000 000 imp/h, 24 V active ou collecteur ouvert	10 à 36 000 000 Imp/h, 24 V active ou collecteur ouvert
Alimentation	24/42/100/110/120/200/220/230/ 240 V ~ (48 à 63 Hz), 24 V =	24/42/100/110/120/200/220/230/ 240 V ~ (48 à 63 Hz), 24 V =	24/42/100/110/120/200/220/230/ 240 V ~ (48 & 63 Hz), 24 V ==
Pulssance absorbée	18 VA (11 W)	16 VA (11 W)	16 VA (11 W)
Erreur de mesure	<1% de la valeur mesurée	< 0,8% de la valeur mesurée	<0,8% de la valeur mesurée
Version Ex	Non	EEx doe to IIC T6 à T3 (K 280 AS)	EEx dge ib IIC T6 à T3 (K 480 AS)
Applications	Mesure de débit et comptage de quantité des fluides, pêtes et boues peu agressivas et homogènes	Tenue abaciue au vide même pour des températures élevées. Céramique ALO, et Platine permettent une grande plage d'utitieation	Revětement en PFA (DN 25 a 157) ou PTFE tigrand choix d'électrodes permettent la mesure des fluides agressifs

Sélection du diamètre nominal


DN (mm)	m³/ħ	Vmln	Vs
2.5	0.017671	0.29452	0.004909
4	0.045239	0.75398	0,012566
6	0.10179	1.6965	0.028274
• •	0.28274	4.7124	0.078540
10	0.63617	10.603	0,17671
20	1,1310	18.850	0.31416
25	1.7671	29.452	0.49087
32	2,8953	48.255	0.80425
40	4.5239	75.398	1.2566
20	7.0686	117.81	1,9635
6	11,946	199.10	3.3183
80	18,096	301.59	5.0265
90	28.274	471,23	7,8540
125	44.179	736.31	12.272
150	63.617	1060.3	17.671
200	113.10	1885.0	31.416

TSX 17 - ADRESSAGE DES ENTREES/SORTIES



MOULES D'EXTENSION TSX

TSX AEG 4111: 4 entrées 4-20 mA

TSX ASG 2001: 2 sorties 4-20 mA

