0206-AER A ST A

SESSION: 2002

DUREE: 4 heures

COEFFICIENT: 2

E1A – ETUDE D'UN SYSTEME D'AERONEF (U11) Option : MS-AVIONIQUE

DOSSIER TECHNIQUE

CE DOSSIER EST COMPOSE DE:

Dossier Technique Page 1 à 5 (description générale)

Dossier Technique Planche 1 à 21

Glossaire Page 1 à 3

GLOSSAIRE

Acronyme	Désignation anglaise	Traduction française
A/SKID	Anti skid	Antidérapage
	Accuracy	Précision
	Address bus	Bus d'adresse
	Address decoder	Décodeur d'adresse
	Address decoding	Décodage d'adresse
ARINC	Aeronautical Radio Incorporated	Norme électronique aéronautique
A/C	Aircraft	Avion
AC	Alternating Current	Courant alternatif
APU	Auxilary Power Unit	Groupe auxiliaire de puissance
BAT	Battery	Batterie
	Brake	Frein
BITE	Built In Test Equipment	Equipement de test embarqué
BSCU	Braking/ steering control unit	Boitier de commande de freinage et orientation
BTMU	Brake temperature monitoring unit	Boitier de surveillance de température freins
	Bus Bar	Barre bus
CFDIU	Centralized Fault Display Interface Unit	Calculateur d'interface du CFDS
CFDS	Centralized Fault Display System	Systéme de visualisation centralisée des pannes
CHAN	Channel	Canal, voie
CMS	Centralized maintenance system	Systéme de maintenance centralisée
C/B	Circuit breaker	Disjoncteur
	Computer	Ordinateur
	Connector	Connecteur
CPU	Central processor unit	Unité centrale de traitement des données
	Data	Donnée
	Data Bus	Bus de données
DC	Direct Current	Courant continu
	Discrete (signal)	Signal discret

BAC. PROFES. « AERONAUTIQUE » option avionique

Epreuve E1A: étude d'un système aéronef

DUREE : 4 heures COEFFICIENT : 2

DOCUMENT : GLOSSAIRE Page 1/3

GLOSSAIRE

Acronyme	Désignation anglaise	Traduction française
	Discrete acquisition interface	Interface d'acquisition de discrets
ECAM	Electronic Centralized Aircraft Monitoring (System)	Système centralisé de surveillance de l'avion
ELAC	Elevator and Aileron Computer	Calculateur de commande de profondeur et des ailerons
EMERG	Emergency	Secours
EPROM	Erasable programmable read only memory	Mémoire morte effacable
	Failure	Panne
FLT	Flight	Vol
FWC	Flight Warning Computer	Calculateur central d'alarme
FIN	Functional Item Number	Repère fonctionnel de l'équipement
	Fuse	Fusible
	Gate	Porte (logique)
GND	Ground	Sol
GPCU	Ground Power Control Unit	Boitier de commande d'alimentation extérieure
	Hardware	Le matériel (ordinateur)
	Input signal	Signal d'entrée
IDG	Integrated Drive Generator	Alternateur à entraînement intégré
LAB	Label	Label
L/G	Landing gear	Train d'atterrissage
LDG GEAR	Landing gear	Train d'atterissage
	Lane	Voie
LGCIU	Landing Gear Control and Interface Unit	Boîtier de commande et d'interface du train d'atterrissage
LH	Left Hand	Gauche
MONG	Monitoring	Surveillance
	Multiplexer	Multiplexeur
	Nose Wheel	Roulette avant

BAC. PROFES. « AERONAUTIQUE » option avionique

Epreuve E1A: étude d'un système aéronef

DUREE: 4 heures

COEFFICIENT: 2

DOCUMENT : GLOSSAIRE

Page 2/3

GLOSSAIRE

Acronyme	Désignation anglaise	Traduction française
OBRM	On board replacable memory	Module mémoire embarquée
PARK BRK	Parking brake	Frein de parking
	Power	Energie, Puissance
PCU	Power Control Unit	Unité de contrôle de puissance des moteurs de volets
	Power supply	Alimentation
PSU	Power supply Unit	Carte d'alimentation
PROM	Programmable read only memory	Mémoire morte
RAM	Random access Memory	Mémoire vive
	Read cycle	Cycle de lecture
	Rectifier	Redresseur
RH	Right Hand	Droite
SFCC	Slat and Flap Control Computer	Calculateur de commande des becs et volets
	Software	Le logiciel (ordinateur)
SDAC	System Data Analog Converter	Convertisseur analogique des données systémes
	Temperature sensor	Sonde de température
	Test voltage	Tension de test (d'essai)
TR	Transformer Rectifier	Transformateur redresseur
	Unit	Calculateur,Boîtier, Unité
	Wheel	Roue
	Write cycle	Cycle d'écriture

BAC. PROFES. « AERONAUTIQUE » option avionique

Epreuve E1A: étude d'un système aéronef

DUREE: 4 heures

COEFFICIENT: 2

DOCUMENT : GLOSSAIRE

Page 3/3

1-GENERALITES:

Pour s'arrêter les avions de ligne modernes utilisent :

- Pendant la phase d'atterrissage :
 - Les aérofreins
 - Les inverseurs de poussée
 - Les freins hydrauliques
- Pendant les phases de roulage :
 - Les freins hydrauliques seulement.

2- GENERALITES SUR LE SYSTEME DE FREINAGE HYDRAULIQUE

Les roues du train principal ont des freins multidisques au carbone, actionnés par deux systèmes indépendants de pistons (planche 1 et 3).

Le système hydraulique Vert en alimente un et l'autre est alimenté par le système Jaune avec l'aide d'un accumulateur de pression (planche 2).

Chaque frein est ajusté automatiquement et comporte deux indicateurs d'usure et un capteur de température.

Les roues du train principal ont des bouchons de surpression dits bouchons fusibles, dont le rôle est de protèger la roue et le pneu contre les éclatements en cas de surchauffe.

3- DESCRIPTION DES DIFFERENTS MODES DE FREINAGE

Les 4 modes de freinage disponibles dépendent :

- Du système hydraulique utilisé
- De la position des boutons A/SKID & NOSE WHEEL AND PARK BRK (planche 4).

BAC. PROFES. « AERONAUTIQUE » option avionique

Epreuve E1A: étude d'un système d'aéronef

DUREE: 4 heures COEFFICIENT: 2

DOCUMENT: DOSSIER TECHNIQUE Page 1/5

A) FREINAGE NORMAL

Le freinage normal est obtenu quand :

- La haute pression du circuit Vert est disponible
- Le bouton A/SKID & NOSE WHEEL est sur la position ON
- Le bouton PARK BRK est sur la position OFF (planche 4)

le contrôle se fait électriquement :

- Avec les pédales (Planche 3)
- Automatiquement, au sol par le système de freinage automatique, en vol quand le levier (landing gear) est sur la position UP pendant 3 secondes.

La régulation est faite sur les 4 servovalves.

B) FREINAGE SECOURS AVEC ANTIPATINAGE

Ce système de freinage utilise la pression hydraulique du circuit Jaune avec la régulation anti skid. Ce mode est obtenu automatiquement si :

- Le circuit Vert n'est pas disponible,
- Des pannes sont présentes sur le système de freinage normal.

C) FREINAGE SECOURS SANS ANTIPATINAGE

Ce mode est utilisé si la régulation de l'anti skid n'est pas disponible. Il peut être déconnecté électriquement si le bouton A/SKID & NOSE WHEEL est sur la position OFF ou en cas de panne de l'alimentation électrique.

D) FREIN DE PARKING

Quand le bouton PARK BRK est sur la position ON (planche 4):

- Les autres modes sont déconnectés,
- Les freins sont alimentés par le circuit hydraulique Jaune ou l'accumulateur.

Les lignes de retour sont fermées pour permettre de maintenir le freinage efficace durant pendant un minimum de 12 heures.

BAC. PROFES. « AERONAUTIQUE » option avionique

Epreuve E1A: étude d'un système d'aéronef

DUREE: 4 heures COEFFICIENT: 2

DOCUMENT : DOSSIER TECHNIQUE Page 2/5

4- SYSTEME DE MESURE DE TEMPERATURE DE FREIN (planche 5)

Ce système:

- Mesure la température de chaque frein,
- Indique la valeur de la température sur chaque unité d'affichage (ou écran) ECAM (planche 5),
- Signale au pilote de retarder le décollage ou de sortir le train d'atterrissage.

5-BITE

Le BSCU surveille en permanence les systèmes électriques et les fonctions de régulations qu'il mémorise dans sa Bite.

6- COMPOSANTS UTILISES POUR LE FREINAGE

- Transmetteur pédale/freins
- Vanne de sélection
- Vanne de levier et sélecteur automatique
- Transmetteur de freinage
- Servo-valves de freinage
- Freins
- Le capteur de température
- Le BSCU

7- GENERALITES SUR LE BSCU (planche 8)

Le BSCU est installé dans le 90VU. (planche 6) Ses fonctions principales sont :

- Contrôle du freinage à travers les servo-valves et le transmetteur de pression.
- Régulation du freinage à travers les vérifications de la vitesse de chaque roue freinée.
- Contrôle du freinage automatique.
- Contrôle de l'orientation de la roue avant.
- Conversion en ARINC 429 de la température qui vient du BTMU. (planche 5)

A) DESCRIPTION DU BSCU

- 1) Le BSCU est constitué par : (planches 6 et 7)
 - 4 alimentations groupées par 2
 - Un connecteur ARINC 600 à l'arrière
 - 6 cartes électroniques
 - Chaque carte contenant un microprocesseur est connectée à un OBRM qui inclut une mémoire PROM.

BAC. PROFES. « AERONAUTIQUE » option avionique

Epreuve E1A: étude d'un système d'aéronef

DUREE: 4 heures

COEFFICIENT: 2

DOCUMENT: DOSSIER TECHNIQUE Page 3/5

2) Description du système 1 et 2 (planche 9)

Chaque système est alimenté indépendamment avec du 115 volts 400Hz et est constitué de 2 voies.

Chaque voie à ses propres alimentations 5 volts, + 15 volts, - 15 volts.

3) Description de la voie de commande (planche 10)

a) Carte de calcul : (planches 11 et 12)

Elle utilise un microprocesseur du type 80186 d'INTEL qui exécute toutes les fonctions du programme et gère les discrets et les entrées analogiques.

Il peut adresser une mémoire de 1 Moctet.

b) Carte d'acquisition : (planches 13, 14)

Un microprocesseur du type 80186 d'INTEL fait l'acquisition des données et les stocke dans une mémoire de 8 K octets.

Il fait la réception et la transmission ARINC 429.

Il possède une mémoire EPROM de 32 Kmots (2 fois 32 K octets)

La planche 18 montre son espace adressable.

4) Description de la voie de surveillance (planche 15)

Elle est architecturée autour d'un microprocesseur 80186 d'INTEL

Elle recoit toutes les données ARINC 429.

Elle est connectée à la carte commande par une liaison série.

5) Fonctionnement des 2 systèmes (planches 9)

A chaque mise sous tension le premier système alimenté prend le contrôle. Si les deux systèmes sont alimentés ensemble le système 1 a la priorité.

BAC. PROFES. « AERONAUTIQUE » option avionique

Epreuve E1A: étude d'un système d'aéronef

DUREE: 4 heures

COEFFICIENT: 2

DOCUMENT: DOSSIER TECHNIQUE Page 4/5

Le microprocesseur avec une fréquence d'horloge de 16 Mhz peut adresser une mémoire de 1 Moctet. Son bus de données est de 16 bits et peut être multiplexé.

Chaque cycle de bus comprend au moins 4 périodes d'horloge (planche 20).

6) Périphérique intégré

Après initialisation, le bloc de contrôle des périphériques est localisé à l'adresse 08000, cette adresse est contenue dans le registre à l'adresse 080FE (planche 19).

7) Entrées des signaux discrets

Il y a 32 entrées de signaux discrets. Certains sont actifs au niveau bas (masse), d'autres au niveau haut (28 volts) (planche 8).

- 8) Conversion analogique/numérique (planche 16)
- 9) Transmetteurs et récepteurs ARINC (planche 17)

Il y a 8 voies qui servent à la réception ARINC et 2 voies pour la transmission ARINC.

Une liste de certains labels utilisés par le système est donnée à la planche 21.

BAC. PROFES. « AERONAUTIQUE » option avionique

Epreuve E1A: étude d'un système d'aéronef

DUREE: 4 heures

COEFFICIENT: 2

DOCUMENT: DOSSIER TECHNIQUE Page 5/5