A REMPLIR PAR LES EXAMINATEURS DE L'EPREUVE E.P.3

Toute aide apportée par les examinateurs sera précisée dans le cadre prévu à cet effet afin de justifier, le cas échéant, la note obtenue.

NUMERO D'INS	CRIPTION	B.E	.P. [C.A.P.	
	EVALUAT	ION DU CA	MDIDA	T	
	B.E.P.	C.A.P.	Aide	apportée (le c	as échéant)
EXPERIMENTATION	/30	/24			
APPLICATION NUMERIQUE	/30	/16			
TOTAL OBTENU	/60	/40	Description		
. ·	A RE	PORTER AU	PV	ВЕР	
Note sur 20 arrondie au ½ p					
	ARE	PORTER AU I	PV	CAP	

Exemple: 10,1 = 10,50

10,6 = 11

ACADEMIES Groupement « EST »

SUJET Nº 10

BEP ET CAP ELECTROTECHNIQUE SESSION 2002

A PRENDRE CONNAISSANCE AVANT LE DEBUT DE L'EPREUVE

EPREUVE E.P.3 EXPERIMENTATION SCIENTIFIQUE ET TECHNIQUE

Durée de l'épreuve : 4 h

Le sujet proposé tient compte d'une répartition prévisionnelle du temps :

- □ 3 heures pour le thème d'expérimentation
- □ I heure pour le thème d'application numérique

Cependant, le candidat peut gérer comme il lui convient la totalité des 4 heures allouées à l'épreuve.

CONSIGNES A RESPECTER POUR CETTE EPREUVE

A) EXPERIMENTATION

* Vous ne commencez le câblage qu'après avoir présenté votre schéma à l'examinateur.

NE PAS METTRE SOUS TENSION

- * Vous ne mettez sous tension qu'après accord de l'examinateur.
- * Toute modification du montage doit se faire hors tension et la remise en service doit se faire sous contrôle de l'examinateur.
- * Vous ne décâblez votre montage qu'à la fin de l'épreuve, après vous être bien assuré de la mise hors tension.
- * N'hésitez pas à faire appel à l'examinateur au moindre incident.
- * Vous devez rédiger vos réponses sur la copie fournie.

B) APPLICATION NUMERIQUE

- * Il n'y a pas de câblage ni de mesures à effectuer dans cette partie de l'épreuve.
- * Il s'agit d'exploiter des résultats issus de mesures déjà réalisées ou (et) d'appliquer les lois d'électrotechnique.
- * Vous devez rédiger directement vos réponses sur le sujet.

(Eviter les ratures, il ne sera pas fourni d'autre exemplaire)

ATTENTION

Répondre dans les cases prévues Préciser les formules utilisées

C) A LA FIN DE L'EPREUVE, avant de quitter la salle, remettez vos copies, sujets et brouillons à l'examinateur.

Remarques: Ne rien inscrire dans les colonnes de droite. Ces colonnes sont réservées aux examinateurs afin qu'ils puissent noter leurs remarques concernant l'aide apporter aux candidats et la note correspondant à la question. (S= sans aide; P=aide partielle; T= aide totale)

<u>CANDIDAT</u> : NOM:	Prénom:	,

THEME D'EXPERIMENTATION N°10	AIDI Sans : S Totale Partiell	S : T	BAF	CAP	
Moteur asynchrone triphasé		1	27278	1	
motour asynomone urprase	in a second				
Mise en situation.					
On se propose d'étudier un moteur triphasé.					
M G cc					
Machine câblée par le centre d'exame	en				
Etude du moteur asynchrone triphasé à rotor en court- circuit.					
1) Relever l'intensité nominale sur la plaque signalétique du moteur :			/2	/2	
			/ **	,-	
2) Déterminer la caractéristique de rendement (η = f(Pu)) pour les valeurs d'intensité de In/2; ¾ de In ; In ; 5/4 de In:					
Rappel : le rendement est donné par la formule : η=Pu/Pa et Pu=TΩ'=2πn'Fl				•	
			'		
Pu=puissance utile du moteur T=couple utile Pa=puissance absorbée du moteur Ω'=vitesse angulaire du rotor					
- Faire le schéma du montage avec tous les appareils nécessaires à la			·		
réalisation des mesures.					
			/4	/4	
	ļ				
			1		
		ļ			
	-				
	į				
1/2 TOTAL A REPORTER	PAGE 2	2	/6	/6	
			, "	, 5	

			· · · · · · · · · · · · · · · · · · ·							
					TOTAL	REPORT I	PAGE 1)E	/6	/6
-Table	eau de i	relevés :	(unités à cor	npléter)				AIDE		
		I:	F:	1:	n':	Pa:				
	1/2								/5	/5
*	3/4	<u> </u>								
	4/4									
	5/4									
- Tabl	eau des	résultat	s :				- 1.			
		Pu=			Pa=	η=				
	1/2								/6	/6
	3/4									
	4/4									
	5/4									
<u>Questi</u> - Mesu	<i>ion B.1</i> rer la r	<u>E.P.</u>		pier millimétr nes du moteu		age en plac	<u>e</u>		/5	/5
					-				/4	
<u>- Calcu</u>	ler pou	r I nomi	nal les perte	s joules dans I	e stator.					
									/2	
- Respe	cter les	consign	es de sécurit	<u>6.</u>					/2	/2
2/2					TO	TAL A REPO	RTER		/30	/24

INSTALLATION MONOPHASEE

On donne:

Une installation monophasée 220V, 50 Hz comporte :

- 70 lampes à incandescence de 100W
- F 5 moteurs asynchrones identiques M1 : (Pu = 3 975W, η = 75%, $\cos \varphi$ = 0,68)
- # 4 moteurs asynchrones identiques M2 : (Pu = 700 W, η = 70%, $\cos \varphi$ = 0,65)

On demande:

- 1. Calculer la puissance absorbée totale de l'installation (Pa).
- 2. Calculer la puissance absorbée réactive totale de l'installation (Qa).
- 3. Calculer le facteur de puissance de l'installation.
- 4. Tracer le triangle des puissances de l'installation dans ces conditions.

1 cm représente 5000 W

1 cm représente 5000 VAr

1 cm représente 5000 VA

Question	1	2	3	4	5	6	7	8	Note
CAP	/2	/2	/2	/2	/2	/3	/3		/16
BEP	/2	/2	/3	/3	/4	/4	/6	/6	/30

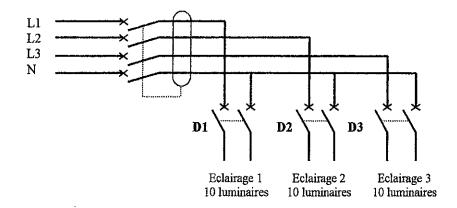
5.	Calculer la puissance réactive	totale tolérabl	e par E	EDF qu	ii nous	donnerait ι	ın facteur
de	puissance $\cos \varphi = 0.93$.						

6. Calculer la puissance réactive Qc que devra fournir un condensateur pour relever le facteur de puissance à cosφ=0,93 en admettant que la puissance réactive tolérable par EDF dans cette installation soit de 15 kVAr.

7. Calculer la capacité C de ce condensateur qui ramènerait le facteur de puissance à 0,93.

BEP SEULEMENT.

8. Tracer le triangle des puissances de l'installation dans ces conditions.(sur papier millimétré).


1 cm représente 5000 unités de puissances

Groupement "Est"	Session	on 2002	Sujet 10A		TIRAGES
Examen et spécialité : B.E.P.et C.A.P. E	lectrotechnique.	CODE	S) EXA	MEN(S) :	
Epreuve :EP3 –Expérimentation scientifique et technique	Durée totale B.E.P. : Durée totale C.A.P. :	Coef. B.E.P. : 3 Coef. C.A.P. : 2		-	
Partie : Application numérique.	Durée B.E.P. : 1 h 00 (conseillée)	Durée C.A.F		page 1/1	

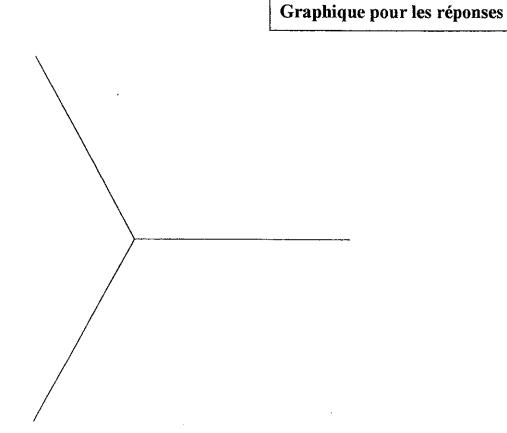
DISTRIBUTION TRIPHASEE DANS UN ATELIER

L'éclairage d'un atelier est alimenté par un réseau triphasé 400 V + Neutre. Il est composé de 30 luminaires fluorescents répartis sur chaque phase.

La puissance d'un luminaire est de 145 W et le facteur de puissance est de 0,86.

Les 3 circuits sont sous tension.

- 1. Calculer la puissance absorbée par chaque circuit d'éclairage, déterminer le facteur de puissance de chaque circuit et l'intensité du courant dans chaque phase.
- 2. Calculer la puissance totale absorbée lorsque les 3 circuits fonctionnent.
- 3. Déterminer graphiquement le courant dans le neutre I_N (utiliser le graphique cicontre 1 cm représente 1 A.)


Le circuit 1 est hors tension.

4. Déterminer le courant dans le neutre I'_N (utiliser le même graphique que celui de la question 3).

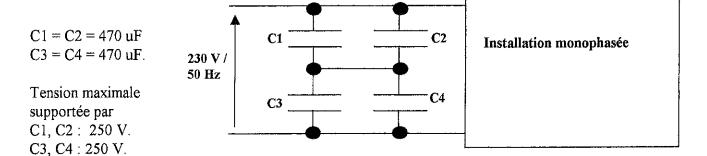
I'_{N=}

Questions	1	2	3	4	5	6	7	Note
CAP	/2	/2	/3	/3	/3	/3		/16
ВЕР	/4	/4	/4	/4	/4	/5	/5	/30

5. Calculer les puissances active et réactive absorbées par les 2 circuits en fonctionnement.

6. Calculer la puissance apparente et le facteur de puissance de l'installation.

BEP SEULEMENT.

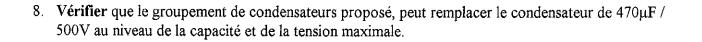

Les circuits 1 et 2 sont hors tension.

7. Déterminer le courant dans le neutre.

Groupement "Est"	Session	Session 2002		SUJET 10B	
Examen et spécialité : B.E.P. et C.A.P. Ele	Code(s) examen(s):				
Épreuve :EP3 –Expérimentation scientifique et technique	Durée totale B.E.P. : Durée totale C.A.P. :			of, B.E.P. : 3 of, C.A.P. : 2	
Partie : Application numérique.	Durée B.E.P. : 1 h 00 (conseillée)	Durée C.A.P.: 1 h (conseillée)		page 1/1	

COMPENSATION D'ENERGIE REACTIVE

Une installation monophasée, alimentée sous 230 V / 50 Hz, doît être compensée avec un condensateur de 470 uF / 500V. Ne disposant pas de ce condensateur, la solution proposée est indiquée sur la figure suivante :


On demande:

- 1. Calculer la valeur maximale de la tension d'alimentation.
- 2. Justifier la raison pour laquelle l'utilisation d'un seul condensateur 470 μF / 250 V ne convient pas.
- 3. Calculer la capacité du condensateur C12 équivalent à C1 et C2.
- 4. Calculer la capacité du condensateur C34 équivalent à C3 et C4.
- 5. Donner l'intérêt de l'association en parallèle des condensateurs.

Questions	1	2	3	4	5	6	7	8	9	Note
CAP	2	4	3	3	4					/16
BEP	I	4	3	3	4	4	4	3	4	/30

BEP SEULEMENT

6.	Calculer la capacité du condensateur Ceq équivalent à C12 et C34.
7.	Justifier l'intérêt de l'association en série des condensateurs, en terme de tension maximale supportée par le condensateur équivalent.

9. Calculer la puissance réactive fournie par le groupement.

Groupement "EST"	Session	Session 2002		SUJET: 10C		
Examen et spécialité : B.E.P et C.A.P. E	lectrotec	hnique.	Code(s) exam	men(s):		
Epreuve : EP3 – Expérimentation scientifique et technique		e totale BEP :				
Partie : Application numérique	Durée B	.E.P : 1 h 00	Durée C.A	P:1h00	Page 1/1	
Nom et prénom du candidat :						