	Académie		Session	n :	
	Examen:		Série :		
	Spécialité/		Repère	e de l'épreuve :	
		ous épreuve :			
	NOM				
	(en majuscule, s Prénoms:	suivi s'il y a lieu, du nom d'épouse)	n° du c	candidat :	
	Né(e) le :		(le numéro est cel	ui qui figure sur la convo	cation ou liste d'appel,
				······································	
		NOTATION DE	<i>L'EPREUVE EP</i>	3	
APPLIC.	ATION NUM	1ÉRIQUE			
Question	nnaire	/7			
<u> </u>					
Problèm	ıe	/13	<u> </u>		
	Total	/ 20	BEP	CAP	
			X 1,5	X 0,8	
				71.0,0	
			/30		/ 16
nanés-	BATINIA TITA	N T		+	
EXPERI	MENTATIO	N			
			BEP	САР	
			DLI	CAF	
		Report	/30		/ 24
			=	_	
			BEP	CAP	
		NOTATION EP3:	/ 60		/ 40
				L	
		Soit	/20		/ 20
/CADÉLEO	CTROTECHNIQ	NT TIE	51 25502 / 50 25509	CHIET NO O	Session 2002
		CIENTIFIOLIE ET TECHNIOLIE	51 25502 / 50 25508	SUJET Nº 9	Session 2002

•

QUESTIONNAIRE A CHOIX MULTIPLE

Domaine S07. Courants alternatifs sinusoïdaux polyphasés

Vous devez retrouver la réponse en cochant un carré prévu à cet effet.

ATTENTION : Pas de crayon,	pas de rature	101	
1-dans un montage étoile, le	courant dans un	fil de phase es	t égal /1
☐ à 2 fois le courant dans un récep	oteur		
\Box à $\sqrt{3}$ fois le courant dans un réc	epteur		
☐ au courant dans un récepteur			
\Box à $\sqrt{2}$ fois le courant dans un réc	epteur		
2-dans un montage triangle	, le courant dans	un fil de phase	est
égal :			/1
☐ à 2 fois le courant dans un récep	oteur		, -
\Box à $\sqrt{3}$ fois le courant dans un réc			
□ au courant dans un récepteur	· Pro-		
\Box à $\sqrt{2}$ fois le courant dans un réc	epteur		
3-Un moteur asynchrone triple la résistance d'un enroulement, on trouve Quelle est la valeur de la rés gardant le couplage ?	r=3 ohms.	•	
gardant to couplage.			/1
$\Box \ 2\ \Omega; \ \Box \ 3\ \Omega; \ \Box \ 4\ \Omega; \ \Box \ 5\ \Omega$; □ 6Ω		
4-Ce même moteur est coupl Quelle est la valeur de la rési	-	rnes du moteur	· en
gardant le couplage ?			/1
$\square 2\Omega ; \;\; \square 3 \Omega ; \;\; \square 4\Omega ; \;\; \square 5 \Omega$	Ω; □ 6 Ω		7.4
ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 9	Session 2002

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 2 / 14

5-Une installation triphasee absorbe une puissance active P=40 kW, sa puissance réactive est Q=30 kvar.	
Quelle est la valeur de la puissance apparente de l'installation?	/1
\Box 20 kVA ; \Box 30 kVA ; \Box 40 kVA ; \Box 50 kVA ; \Box 60 kVA	/1
6-Pour relever le facteur de puissance d'une installation triphasée, on utilise une batterie de condensateurs couplés en triangle. Si les condensateurs étaient couplés en étoile, la puissance réactive de cette batterie serait :	
	/1
2 fois plus petite2 fois plus grande	
☐ 3 fois plus petite	
☐ 3 fois plus grande	
7-L'écriture d'un système triphasé classique est pour les tensions	
composées :	,,,
$u_{12}=400\sqrt{2} \sin 314 t$	/1
$u_{23}=400\sqrt{2} \sin{(314t-\frac{2\pi}{3})}$	
et l'écriture de u31 est :	
$\Box u_{31}=230\sqrt{2} \sin 157 t$	
$\Box u_{31}=400 \sin(314t-\pi)$	
$u_{31}=400\sqrt{2} \sin(314t-\frac{4\pi}{3})$	
$1 u_{31} = 400\sqrt{2} \sin(314t - \frac{5\pi}{3})$	

			,
BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 3 / 14

note questionnaire: /7

APPLICATION NUMERIQUE

-Relative au domaine S07
Courants alternatifs sinusoïdaux polyphasés

-Un chauffe-eau électrique comporte 3 résistances identiques qui peuvent être considérées comme des résistances pures. Ces 3 résistances sont marquées 230V-1000W.

<u>I- RESEAU 400V- 50Hz</u> (5 points)

-Ce chauffe-eau est alimenté à partir d'une tension triphasée	
400V-50Hz entre phase.	
1-Quel couplage des résistances du chauffe-eau faut-il réaliser	
pour un fonctionnement correct ? (faire un schéma)	/2
2 - Calculer la puissance du chauffe —eau.	/1
3-Calculer l'intensité du courant dans chaque fil de phase et	
dans chaque résistance.	/1
4-Calculer la valeur de chaque résistance.	/1
II-RESEAU 230V-50Hz (4 points)	
-Ce chauffe-eau est alimenté à partir d'une tension triphasée	
230V-50Hz entre phase.	
1-Quel couplage des résistances du chauffe-eau faut-il réaliser	
pour un fonctionnement correct (P=3000W) ? (faire un schéma)	/2
2-Calculer l'intensité du courant dans chaque résistance.	/1
3-Calculer l'intensité du courant dans chaque fil de phase.	/1
III- TENSION MONOPHASEE 230V- 50Hz (4 points)	
-Ce chauffe-eau est alimenté à partir d'une tension monophasé	e
230V (phase-neutre).	
1-Comment faut-il brancher les 3 résistances du chauffe-eau	
pour qu'elles absorbent une puissance P=3000W. (faire un schéma)	/2
2-Calculer la résistance équivalente du montage.	/1
3-Calculer le courant absorbé	/1
5-Carcarer ic courain absorbe	/ .R.
ΤΩΤΑΙ	/13

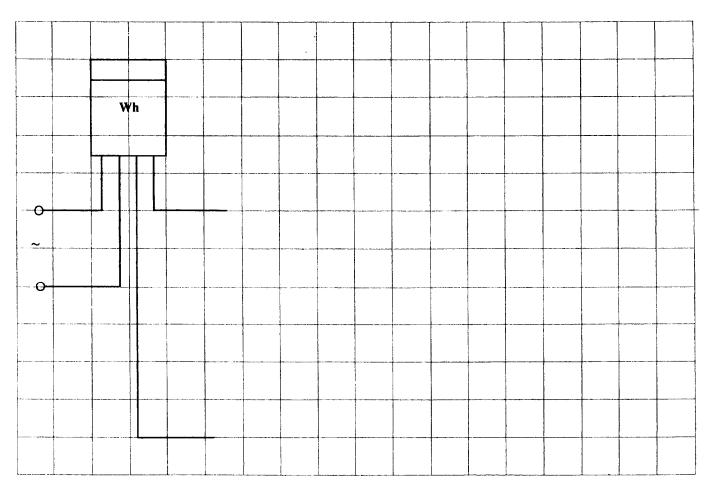
BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 4 / 14

THÈME D'EXPÉRIMENTATION RELATIF AU DOMAINE SO4

DISTRIBUTION ET COMPTAGE AMÉLIORATION DU FACTEUR DE PUISSANCE

THÈME

Le contexte industriel d'une P.M.E. nécessite l'amélioration du facteur de puissance de son installation.


Celle-ci, est alimentée par un réseau E.D.F. 230 V/50 Hz, à travers un compteur d'énergie monophasé.

En temps que Technicien d'entretien en Génie Électrique, on vous demande d'établir une fiche technique de l'ensemble de l'installation, qui comporte séparément :

- Six lampes incandescentes, commandées par un interrupteur K₁;
- Un tube fluorescent, non compensé, commandé par un interrupteur K2;
- Un moteur monophasé, commandé par un interrupteur K₃.

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 5 / 14

L- SCHÉMA DE PRINCIPE DE L'INSTALLATION :

BEP/CAP ELECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 6/ 14

IL- UTILISER UNE PINCE AMPEREMETRIQUE OU UN AMPEREMETRE :

2.1 Mesurer l'intensité absorbée, par :

Use by Le groupe de 6 lampes de tungstène;
Use tube fluorescent;
Use moteur monophasé;
Use L'ensemble de l'installation.

2.2- Tableau des résultats :

Lampes	Tube fluorescent	Moteur	Installation
Courants $I_L =$	I _F =	I _M =	I =

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 7/ 14

				,
Ш.	HTH ISE	R UN CO	MPTELIR	D'ÉNERGIE

3.1- Relever la plaque signalétique du compteur d'énergie :

• Réf :	• U =
• I =	• C =

3.2- A l'aide du compteur d'énergie monophasé, on veut déterminer la puissance active consommée et le facteur de puissance de chacun des dipôles.

Donner les formules qui vont exploiter vos résultats de mesure (suivant votre compteur):

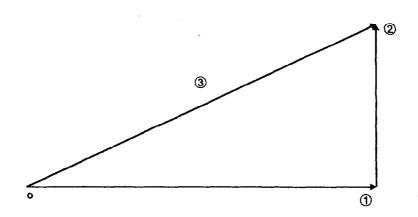
•		
·	⇒	
	⇒	
	⇒	
	⇒	

· · · · · · · · · · · · · · · · · · ·			
- 859/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 9	Session 2002
EXPERIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 8/14

3.3- Déterminer la puissance active consommée et le facteur de puissance pour « un tour complet » du disque du compteur d'énergie, pour :

\$ Le groupe de 6 lampes de tungstène ; \$ Le tube fluorescent, non compensé ;

Le moteur monophasé;


\$ L'ensemble de l'installation.

3.4- Tableau des résultats :

C =	Wh/tr	Temps	Énergie	Puissance active	Facteur de puissance
La	mpes				
ì	uorescent				
Me	oteur				
Insta	llation				

IV.- APPLICATION DU TRIANGLE DES PUISSANCES:

4.1- Donner les formules des puissances et leurs unités, contenues dans ce triangle :

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 9	Session 2002
ED 3 · EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée · 4 H 00	Coef · 3 on 2	Page 9/ 14

1	•	⇒	
2	•	⇒	
3	•	⇒	

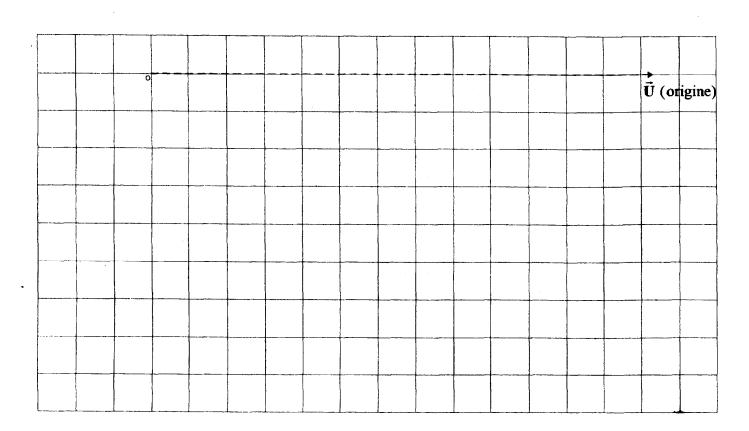
4.2- Avec vos résultats précédents, effectuer le calcul des différentes puissances :

	Tube fluorescent	the professional figures and the control of the con	Installation
①			
2			
3			

V.- APPLICATION DU GRAPHIQUE DE FRESNEL :

5.1- Vérifier que la somme des courants dérivés par les différents récepteurs, correspond à l'intensité totale mesurée par la pince ampèremètrique, ainsi que le facteur de puissance de l'installation :

$$\|\vec{\mathbf{I}}\| = \|\vec{\mathbf{I}}_{L} + \vec{\mathbf{I}}_{F} + \vec{\mathbf{I}}_{M}\| \text{ et } \widehat{\boldsymbol{\varphi}} = \widehat{(\vec{\mathbf{I}}; \vec{\mathbf{U}})}$$


BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 9	Session 2002
EP 3 · EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef : 3 on 2	Page 10/14

5.2- Reporter vos données et faites le choix d'une échelle, pour :

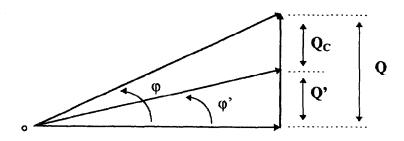
• Lampes de tungstène : $I_L =$; $\cos \phi_L =$; $\phi_L =$

• Tube fluorescent : $I_F =$ ______ ; $\cos \phi_F =$ ______ ; $\phi_F =$ _______

• Moteur monophasé : $I_M =$ _____; $\cos \varphi_M =$ _____; $\varphi_M =$ _____

5.3- Vos résultats déduits du graphique de Fresnel:

The figure of the property of the first of the property of the	Déphasage	Facteur de puissance


BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 9	Session 2002
EP 3 · EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 11/14

VI.- AMÉLIORATION DU FACTEUR DE PUISSANCE :

Le facteur de puissance étant déplorable, calculer la capacité à placer dans l'installation pour son amélioration à :

$$\mathbf{Cos}\ \boldsymbol{\varphi^{\prime}}=\mathbf{0.93}$$

6.1- Rappel théorique et formules :

	$Q_C = Q - Q'$	$Q_C = P (\tan \varphi - \tan \varphi')$	$Q_C = U^2 C \omega$	$\omega = 2 \pi f$
ᆫ				

6.2- Calcul du condensateur qui relèvera le facteur de puissance à la valeur demandée :

Formulæ	. Voc calculs	Résultats
Cos φ' = 0,93		tan φ' =
Q' =		Q' =
$Q_C =$		Q _C =
C =		C =

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée 4H09	Coef.: 3 ou 2	Page 12/14

6.3- Placer le condensateur dans l'installation	(compléter votre schéma) et relever la
nouvelle valeur du courant absorbé	

6.4 - Vérifier la valeur du nouveau courant nécessaire à l'installation, par le calcul et porter votre propre conclusion.

$$P_a' = U I' \cos \varphi'$$

I' = A

BEP/CAP ELECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 13/14
		, v '	11 Au 3

AVALENTATION PROPERTY OF THE STATE OF THE ST

PARTIES	QUESTIONS	BEP	CAP
I		/3	/3
II	Q#°2.2	/2	/2
	Of an	/1	/1
m	0.832	/2	/2
	Qn234	/2	/2
IV		/2	/2
1 V	Q 19912	/6	/7
V	() n°s/2	/3	
V	() e \$13	/2	
	O 1862	/4	/4
VI	Q n°6.3	/1	/1
	Q n°6.4	/2	

NOTE		
NOIL	Hings Straight and the section of the Artificial Artificial Control of the Artificial Control of the Control of	//4
	tande de la come laterate de la compansión	

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 9	Session 2002
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 14/14