BACCALAUREAT PROFESSIONNEL MAEMC Distributeur de boisson BRIO C ESPRESSO

E1A U11

Epreuve scientifique et technique Etude théorique de fonctions

CORRIGE

BACCALAUREAT PROFESSIONNEL MAEMC		SES	SION 2003
EPREUVE E1A U11: Etude théorique des fonctions			
Durée: 4 HEURES Coefficient: 2		Page	0/6

A REGULATION DE TEMPERATURE DE LA CHAUDIERE

1) FONCTION CAPTAGE DE TEMPERATURE

Question 1.1 En vous aidant de la documentation constructeur page 15 et de la vue éclatée page 16, déterminer la valeur de la résistance RT de la NTC1 à. 93 °C.

Température	Valeurs de la
de l'eau	NTC₁ kΩ
90°	0,9155
95°	0,7861

 $\Delta\theta$ =95 - 90 = 5° Δ Valeurs de la NTC₁ = 0,1294K Ω

915,5
$$\Omega$$
 - $\frac{129,4 * 3}{5}$ = 915,5 - 77,64 = 837,86 Ω ~837,9 Ω

Question 1.2

Donner l'expression de VA en fonction de VCC, R1, RT

Formule du pont diviseur

$$VA = VCC \frac{RT}{R1 + RT}$$

BAC PRO MAEMC 2003			
EPREUVES E1A U11		PAGE	1/6

DISTRIBUTEUR DE BOISSON BRIO C ESPRESSO

Question 1.3

Pour une température de 93 °C, calculer la valeur à donner à R1 pour obtenir VA = 6 V

Pour obtenir $V_A = 6 \text{ V à } 93 \text{ °C}$, il faut $R1 = R_T$ $R_1 = 837,9 \text{ ohms}$

2) FONCTION AMPLIFICATION DU SIGNAL

Question 2.1

Le circuit intégré linéaire fonctionne en amplification, justifier votre réponse

Le circuit intégré linéaire fonctionne en amplificateur (contre réaction négative par R4).

Question 2.2

La relation qui lie VT à VA est la suivante:

$$VT = -10 VA + 66$$

En déduire la valeur de VT pour une température de 93°C On prendra comme valeur de R_t de la NTC₁ : 838 Ω .

A 93 °C, VA = 6 V (question 1.3) VT = - 10 . VA + 66 VT = -10 . 6 + 66 = 6 V

	BAC PRO MAEMC 2003		
EPREUVES E1A U11		PAGE	2/6

3) FONCTION COMPARAISON

Question 3.1

Le circuit intégré linéaire fonctionne en comparateur. Justifier votre réponse.

Il n'y a pas de contre réaction dans ce montage.

Question 3.2

Sachant que le circuit intégré est alimenté en +12V/-12 V, donner les valeurs de tensions possibles sur la sortie du circuit intégré.

V _T en volts	5,8	6,1	6,8	8
V _S en volts	0	12	12	12

Question 3.3

Déterminer la valeur à donner à R8 pour obtenir une différence de potentiel V_R = 6v ?

Pour
$$VR = 6 V$$
, $VR / Vcc = R7 / (R7 + R8)$ (formule du pont diviseur) Il faut $R8 = R7 = 1,6 K$ ohms

question 3.4

Compléter la table de vérité ci dessous en indiquant les états du transistor T (bloqué ou saturé)

Vs	0	1
Transistor	Bloqué	Saturé

Question 3.5

Calculer l'intensité du courant l circulant dans la LED lorsqu'elle est allumée.La tension de seuil de la LED est de 2,2 V

Question 3.6

Indiquer la fonction de la diode électroluminescente dans la carte de la régulation de température.

La diode électroluminescente visualise la période de chauffe

	BAC PRO MAEMC 2003		
EPREUVES E1A U11		PAGE	3/6

DISTRIBUTEUR DE BOISSON BRIO C ESPRESSO

Question 3.7

Entourer le triac sur le document joint

Composant en bas à gauche sur la carte

Compléter le tableau suivant en utilisant les notations suivantes:

LED	A (allumée)	ou	E (éteinte)
T1	B (bloqué)	ou	S (saturé)
TRIAC	C (conduit)	ou	NC (ne conduit pas)
THERMOPLONGEUR	A (alimenté)	ou	NA (non alimenté)

TEMPERATURE (°C)	90	95
VA (V)	6,26	5,81
VT (V)	3,4	7,9
VS (V)	+12	0
LED	allumée	éteinte
T1	S	В
TRIAC	С	NC
THERMOPLONGEUR	Α	NA

Indiquer vos calculs pour obtenir $V_{T90^{\circ}}$ et $V_{T95^{\circ}}$

$$V_T = -10V_A + 66 = -62,6 + 66 = 3,4v$$

-V_{T95°}

$$V_T = -58,1 + 66 = 7,9v$$

	BAC PRO MAEMC 2003		
EPREUVES EIA UII		PAGE	4/6

B ETUDE DU CIRCUIT D'ALIMENTATION DU THERMOPLONGEUR

Question 1.1

Valeur ohmique du thermoplongeur

Rth = $U^2/Pth = 230^2/1000 = 52.9 \Omega$

Tension réelle aux bornes du thermoplongeur

U th = Urés - Utri = 225 - 3 = 222V

Courant dans le circuit du thermoplongeur lth = Uth / Rth = 222 / 52,9 = 4,196A

Courant absorbé = 4,2 A

Courant présumé : 4,2 . 1,5 = 6,3 A

Le calibre immédiatement supérieur est de10A Il convient donc bien à la protection de l'appareil

Question 1.2

Puissance réellement restituée

Pth = Uth x Ith = $222 \times 4{,}196 = 931{,}5W$ ou

Pth = Rth × Ith 2 = 52,9 × 4,19 6^2 = 931.4 W

Question 2.1

Formules utilisées $P = W/t \Rightarrow t = W/P$ et $W = m \times c (\theta_2 - \theta_1)$ 0,4litre = 0,4Kg

Energie utile

 $W = 0.4 \times 4180 (93 - 18) = 125400J$

t = 125400 / 928,77 = 135 s soit**2min 15s**

Question 3.1

 $W_{en Wh} = P \times t = (931 \times 30) / 3600 = 7,75Wh$

Le technicien constate donc le bon fonctionnement du distributeur . 7,65Wh en moyenne annoncé par le constructeur.

	BAC PRO MAEMC 2003		
EPREUVES E1A U11		PAGE	5/6

DISTRIBUTEUR DE BOISSON BRIO C ESPRESSO

BAREME DE NOTATION

N° DE CANDIDAT :

PART	TE A
QUESTION 1.1	/6
QUESTION 1.2	/5
QUESTION 1.3	/5
QUESTION 2.1	/3
QUESTION 2.2	/3
QUESTION 3.1	/3
QUESTION 3.2	/5
QUESTION 3.3	/5
QUESTION 3.4	/5
QUESTION 3.5	/5
QUESTION 3.6	/5
QUESTION 3.7	/3
QUESTION 3.8	/12
TOTAL	/65

PARTIE B		
QUESTION 1.1	/9	
QUESTION 1.2	/5	
QUESTION 2.1	/14	
QUESTION 3.1	/7	
TOTAL	/35	

TOTAL	/100
NOTE	/20

BAC PRO MAEMC 2003		
EPREUVES E1A U11	PAGE	6/6