BACCALAUREAT PROFESSIONNEL MAINTENANCE AUTOMOBILE Session 2003

Option C: bateaux de plaisance

Nature de l'épreuve : E 2 : Epreuve de Technologie

Unité U 2 : Etude de cas expertise technique Epreuve écrite - coefficient 3 - durée 3 heures

THEME SUPPORT DE L'ETUDE :

SYSTEME D'INJECTION D'ESSENCE **FICHT RAM**

DOSSIER CORRIGE

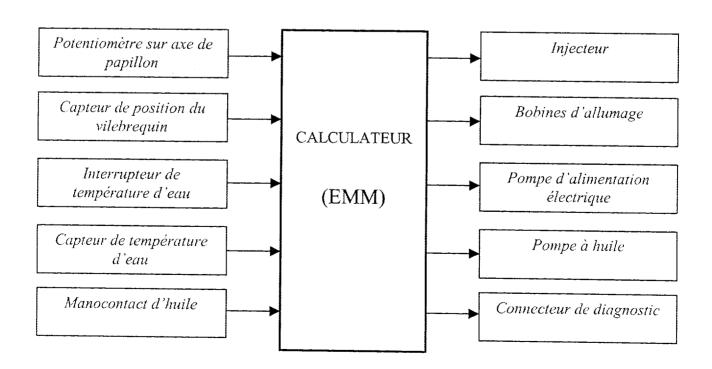
Question	Note	Question	Note	Question	Note	Question	Note
Q1	/1	Q8	/4	Q15	/1	Q22	/1
Q2	/1	Q9	/1	Q16	/4	Q23	$\frac{1}{\sqrt{2}}$
Q3	/2	Q10	/6	Q17	/7	Q24	/1
Q4	/3	Q11	/2	Q18	/3	Q25	/2
Q5	/1	Q12	/1	Q19	/2	Q26	/2
Q6	/2	Q13	/1	Q20	/1	Q27	
Q7	/2	Q14	/4	Q21	/1		
					NOTE	/60	/20

Examen: BACCALAUREAT PROFESSIONNEL	Option : C	Session : 2003	
Spécialité : MAINTENANCE AUTOMOBILE	Code: 0306-MV BP T	Durée : 3 h	Coef.: 3
Epreuve : E2 - Epreuve technologique	Unité : U2 – Etude de cas-Expertise technique		

Monsieur Durand vous demande d'intervenir au port sur un moteur hors-bord 2 temps Evinrude de 90 ch équipé du système d'injection directe d'essence FICHT RAM. Ce moteur totalise 300 h de fonctionnement, et refuse de démarrer.

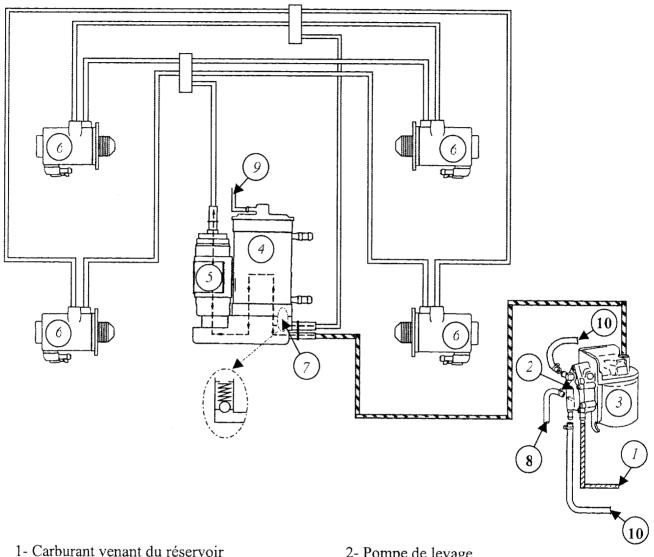
TRAVAIL DEMANDE

Analyser le système, effectuer le diagnostic, proposer une méthode de remplacement des éléments défectueux en répondant aux questions Q1 à Q27


Q1 Indiquer la fonction globale du système d'injection d'essence.

Fournir au moteur un mélange air / essence adapté à ses conditions de fonctionnement et à la réglementation en vigueur.

Q2 Complétez le tableau synoptique ci-dessous en utilisant la liste des éléments suivants :


Bobines d'allumage
Pompe à huile
Interrupteur de température d'eau
Potentiomètre sur axe de papillon
Injecteur

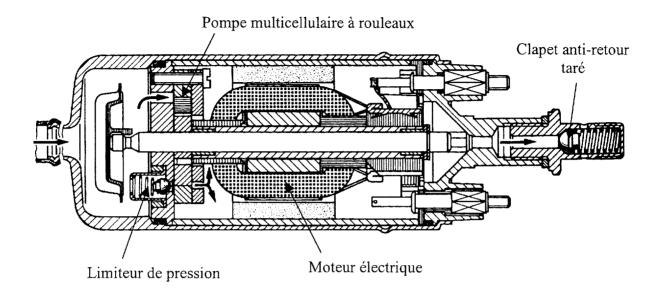
Connecteur de diagnostic
Capteur de position du vilebrequin
Manocontact d'huile
Pompe d'alimentation électrique
Capteur de température d'eau

Examen: BAC PRO MVA option C E2 DOCUMENT CORRIGE Session: 2003 DC: 1/9

Q3 Identifiez les principaux éléments qui composent le circuit d'alimentation d'essence du moteur Ficht Ram

- 3- Filtre à carburant séparateur d'eau
- 5- Pompe à carburant électrique
- 7- Régulateur de pression
- 9- Event du séparateur

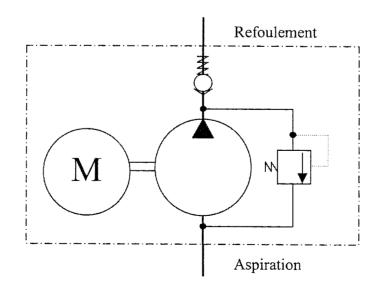
- 2- Pompe de levage
- 4- Séparateur de vapeur
- 6- Injecteurs de carburant
- 8- Arrivée d'huile
- 10- Pression carter


Q4 Repérez les différentes pressions qui règnent dans les circuits en les coloriant en :

Vert: aspiration

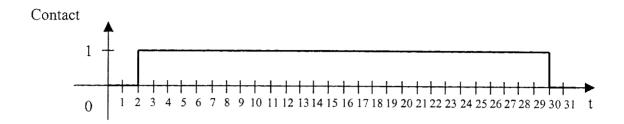
Bleu: 0,8 b

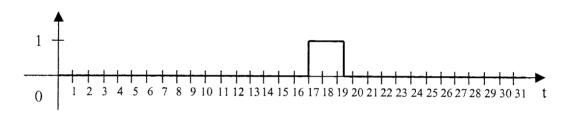
Examen: BAC PRO MVA option C E2 DOCUMENT CORRIGE Session : **2003 DC**: 2/9 • Rouge: 1,72 à 2,76 b <u>x x x</u>


La pompe à carburant employée sur ce moteur est une pompe électrique, multicellulaire à rouleaux :

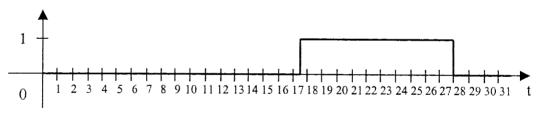
Q5 Quel type d'énergie génère la pompe à carburant électrique ?

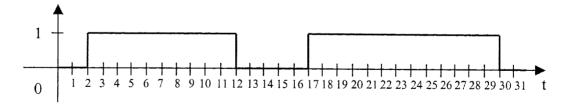
Energie hydraulique


Q6 Complétez, en vous aidant de la représentation ci-dessus, le schéma hydraulique normalisé de cette pompe (voir document ressource page 16/16).


Q7 Quel élément définit la pression dans le circuit d'alimentation des injecteurs ?

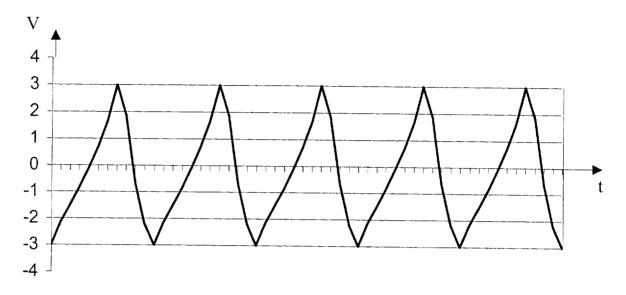
Examen: BAC PRO MVA option C E2	DOCUMENT CORRIGE	Session: 2003	DC:	3/9	
					1


Q8 Tracez le chronogramme de fonctionnement de la pompe à carburant électrique. (Voir document ressource pages 11/16 et 15/16)


Démarreur

Moteur thermique

Pompe à carburant électrique



Q9 Le capteur de position de vilebrequin fournit un signal électrique au calculateur. Celui-ci en tire deux informations, lesquelles ?

- □ La fréquence de rotation du moteur
- Et position angulaire du vilebrequin

Examen: BAC PRO MVA	option C E2	DOCUMENT CORRIGE	Session: 2003	DC : 4/9	,

Q10 le signal ci-dessous est le signal généré par le capteur de position à n moteur = 2000 tr/min avec une valeur d'entrefer de 1mm. Tracez sur le même graphe, le signal relevé à 2000 tr/min avec une valeur d'entrefer de 2 mm. (Les valeurs sont laissées à votre appréciation seule sera prise en compte la cohérence du tracé)

On rappelle que:

$$E = \frac{\Delta \Phi}{\Delta t}$$

E: FEM induite dans le bobinage du capteur

arDelta arPhi : Variation de flux

 Δt : Durée de la variation

Avec $\Delta \Phi = \Phi maximum - \Phi minimum$

Or, lorsque l'entrefer $\nearrow \longrightarrow \Phi$ maximum

Q11 Quelle grandeur physique est utilisée par le calculateur pour calculer le régime moteur ?

- □ La tension induite par le capteur
- □ La fréquence du signal généré par le capteur →

Afin d'évaluer l'état mécanique du moteur,	vous décidez de mesurer les pressions de fin
compression. Vous relevez les valeurs suiva	antes:
Cylindre 1: 10,5 bars	Cylindre 2: 11 bars
Cylindre 3: 12 bars	Cylindre 4: 11,5 bars

Q12 Les valeurs relevées indiquent :

•	Une étanchéité des cylindres insuffisante	
•	Une étanchéité des cylindres satisfaisante	\bowtie

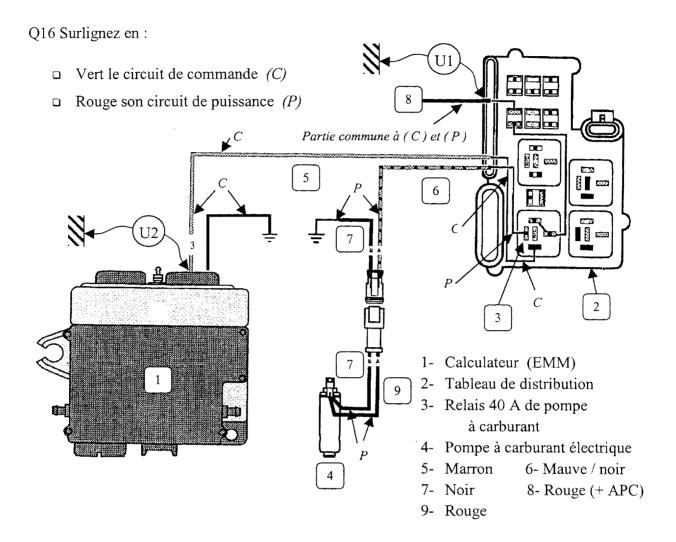
Q13 Justifiez votre réponse (Voir document ressource).

Le constructeur préconise un écart entre les cylindres de 25 % maximum

Les relevés, font apparaître une différence inférieure à 25 %

L'étanchéité des chambres de combustion semble satifaisante.

Q14 Vous décidez de vérifier le système d'allumage. Indiquez une méthode de contrôle pour vérifier la matière d'œuvre de sortie de ce système.


- Retirer les fils de bougies.
- Les placer sur des éclateurs réglés à 11 mm d'écartement, et reliés à la masse.
- Actionner le système d'allumage cylindre par cylindre à l'aide d'un ordinateur portable et du logiciel EMMDIAG. (Ou faire tourner le moteur au démarreur)
- Vérifier que l'on obtient bien une étincelle pour chaque cylindre.

Q15 Indiquez 2 précautions à observer lors de ce contrôle.

Ne pas faire fonctionner le système d'allumage à vide Ne pas toucher aux fils haute tension moteur tournant.

Examen: BAC PRO MVA	option C E2	DOCUMENT CORRIGE	Session: 2003	DC: 6/9
			•	

Lors du contrôle du système d'allumage, vous avez constaté un fonctionnement de la pompe à carburant électrique qui vous semble anormal (contrôle auditif). Afin d'effectuer le contrôle de cette pompe et de son relais, on vous demande de :

Q17 Complétez le tableau ci-dessous (voir document ressource 15/16).

ľ	Conditions de Valeur Valeur		Fonctionnement	Fonctionnement			
mes	ure	Grandeur mesurée	relevée	attendue	Observé de la	Attendu de la	
Contact	Moteur		1010100	attendae	Pompe électrique	Pompe électrique	
		Tension U1			Section was a second		
1	0	d'alimentation de	U_{Batt}	U_{Batt}			
		la platine		·		3 0 C 10 10 C 10 C 10 C 10 C 10 C 10 C 1	
1 depuis		Tension U 2					
moins	0	relevée à la borne $\cong 0 \text{ V}$	≅0 V	1	1		
de 10 s		3 du calculateur					
1 depuis		Tension U 2					
plus de	e 0	relevée à la borne	U_{Batt}	U_{Batt}	0	0	
10 s		3 du calculateur					
		Tension U 2					
1	1	relevée à la borne	$\mathrm{U}_{\mathrm{Batt}}$	0 V	0	1	
		3 du calculateur					

Examen: BAC PRO MVA option C E2	DOCUMENT CORRIGE	Session: 2003	DC : 7	7/9
---------------------------------	------------------	---------------	--------	-----

Q18 Indiquez à partir du tableau précédent 3 éléments qui peuvent être à l'origine de ce dysfonctionnement.

- □ Le calculateur
- □ Le capteur de position du vilebrequin
- □ Le faisceau du capteur de position du vilebrequin

Après avoir remplacé le ou les élément(s) défectueux, vous démarrez le moteur et constatez qu'il ne peut dépasser un faible régime (1800 tr / min).

Q19 Citez 4 dysfonctionnements pouvant être la cause de ce régime maximum limité (Voir document ressource).

- □ Température moteur moteur >100° C.
- □ Pression d'huile insuffisante.
- \Box U alternateur > 40 V.
- □ Température du calculateur (EMM) excessive.

Q20 Justifiez votre réponse.

Le régime moteur est limité à 1800 tr / min ce qui correspond au régime maximum possible dans le cas de la mise en oeuvre de la procédure de sauvegarde du moteur (S.L.OW).

Le moteur ramené à l'atelier, vous décidez d'interroger la mémoire du calculateur à l'aide d'un ordinateur portable et du programme EMMDIAG, vous relevez le code défaut suivant : 43.

Q21 Quel dysfonctionnement est signalé par le code 43 ? (Voir document ressouce).

Capteur de température d'eau au dessus de la plage d'utilisation

Examen: BAC PRO MVA option C E2 DOCUMENT CORRIGE Session: 2003 DC: 8/9

Q22 Quel contrôle simple pouvez-vous effectuer pour vérifier la température de
fonctionnement du moteur ?
Vérifier la température du jet témoin.
Q23 Vous décidez de contrôler le système chargé d'indiquer la température moteur au calculateur. Indiquez les numéros des points de mesure (Voir doc. Ressource page 13/16).
D 5
u 16
Q24 Précisez les conditions de mesure (Voir document ressource page 14/16).
Cette mesure doit être effectuée capteur à une température de 25 ° C.
Q25 Comment évolue la résistance du capteur de température d'eau de ce moteur lorsque la température moteur augmente ?
□ Elle augmente
Elle diminue
Q26 Justifiez votre réponse.
Le Capteur de température d'eau est une thermistance de type CTP (à coefficient de
température positif).
Sa résistance est proportionnelle à la température.
Q27 Vous relevez, dans les conditions préconisées par le constructeur, une valeur de
résistance du capteur de température d'eau de 18420 Ω Conclusion :
La valeur de résistance du capteur est hors tolérance (9 à 11 k Ω).
Le capteur doit être remplacé.

Examen: BAC PRO MVA option C E2 DOCUMENT CORRIGE Session: 2003 DC: 9/9

Note aux correcteurs

Pour les questions Q2, Q3, Q4, Q6, Q8, Q9, Q10, Q16, Q17, Q18 appliquer le barème détaillé ci-dessous.

Q2: 1 erreur 0,5 point 2 erreurs 0 point.

Q3: 1 erreur 1,5 point 2 erreurs 1 point 3 erreurs 0,5 point.

Q4: 1 point par couleur correcte.

Q6: 0,5 point par élément correctement représenté

□ Moteur électrique.

□ Pompe.

□ Clapet anti-retour taré.

□ Limiteur de pression.

Q8: 1 point par seuil correct (2s, 12s, 17s, 30s).

Q9: 0,5 point par réponse correcte.

Q10 : Diminution de la tension induite sur 2 points.

Fréquence du nouveau signal identique à la fréquence du signal généré avec un

entrefer d'1 mm sur 1 point.

Q16: 0,5 point par bonne réponse.

Q17: Circuit de commande sur 2 points, circuit de puissance sur 2 points.

Q 18: 1 point par bonne réponse.