EXAMEN : BACCALAUREAT PROFESSIONNEL	BACCALAUREAT PROFESSIONNEL								
SPECIALITE: CARROSSERIE									
OPTION: Construction et Réparation	Durée: 2 heures	Coef.: 2							
Sous-épreuve B1: Mathématiques et Sciences Physiques	Unité U.12								

Ce corrigé comporte 5 pages numérotées de 1 à 5.

- CORRIGÉ -

MATHEMATIQUES: 15 points

EXERCICE I (7 points)

1) Calculer r sachant que P = 11,25 W lorsque I = 1,5 A P = 11,25 W et I = 1,5 A \Rightarrow 11,25 = 12 × 1,5 - r × 1,5² \Rightarrow 2,25 r = 18 - 11,25 \Rightarrow r = 6,75/2,25 \Rightarrow r = 3 Ω

2) Compléter le tableau de valeur de l'annexe A à 10^{-1} près.

→ tableau de valeurs - voir Annexe A

Tracer dans le repère de l'annexe A, la courbe représentative de f. 1 point

→ courbe représentative - voir Annexe A

- 3) Déterminer f'(x) sachant que f' désigne la fonction dérivée de f.

 1 point f'(x) = 12 6x
- 4) Déterminer par le calcul pour quelle valeur de x la fonction f admet un maximum.
 0,5 point

fadmet un maximum si f'(x) = 0 \Rightarrow 12 - 6x = 0 \Rightarrow 6x = 12 \Rightarrow x = 2

En déduire la puissance utile maximale du moteur. 0,5 point

Puissance utile maximum du moteur : $P = f(2) = 12 \times 2 - 3 \times 2^2 = 12W$

5) Compléter en annexe A, le tableau de variation de f dans l'intervalle d'étude [0; 4]. 1 point Ne pas oublier de reporter toutes les valeurs particulières.

→ tableau de variation - voir Annexe A

6) Résoudre l'équation $12x - 3x^2 = 0$ $12x - 3x^2 = 0 \Rightarrow 3x (4 - x) = 0$ soit x = 0 ou $4 - x = 0 \Rightarrow x = 4$

Si l'axe du moteur se bloque accidentellement, la puissance utile du moteur s'annule. En déduire, par la méthode de votre choix, l'intensité qui sera alors absorbée par le moteur ? 0,25 point L'intensité absorbée par le moteur sera de 4 A

1 point

EXERCICE II (4 points)

A(210;120); B(170;135); C(110;90)

1) Montrer que les coordonnées de \overrightarrow{AB} sont (-40;15) et celles de \overrightarrow{AC} : (-100; -30)

Coordonnées de \overrightarrow{AB} (-40;15) \overrightarrow{AC} (-100; -30)

1 point

2) Calculer AB et AC , à l'unité près.

1 point

Calculer
$$||AB|| = \sqrt{(-40)^2 + 15^2} = 43$$

 $||\overrightarrow{AC}|| = \sqrt{(-100)^2 + (-30)^2} = 104$

3) Calculer le produit scalaire $\overrightarrow{AB} \cdot \overrightarrow{AC}$

1 point

Produit scalaire
$$\overrightarrow{AB} \times \overrightarrow{AC} = -40 \times (-100) + 15 \times (-30) = 3550$$

4) En déduire la mesure au degré près de l'angle vertical de visibilité $\alpha = BAC$

1 point

$$\overrightarrow{AB} \times \overrightarrow{AC} = ||\overrightarrow{AB}|| \times ||\overrightarrow{AC}|| \times \cos \alpha \implies \cos \alpha = \frac{3550}{43 \times 104} = 0,7938.. \implies \alpha = 37^{\circ}$$

Angle vertical de visibilité $\alpha = 37^{\circ}$

EXERCICE III (4 points)

1) Calculer à l'euro près la nouvelle valeur, u₂, de ce pont en janvier 2002 puis la valeur u₃, 0,25

valeur en janvier 2 002 : 10 000 - 10 000×10/100 = 9 000 €

0,25 point

en janvier 2003.

0,25 point

cote en janvier 2 003 : 9 000 − 9 000×10/100 = 8 100 €

- 2) Les valeurs calculées en janvier sur les années suivantes 2004, 2005, 2006, 2007 forment une suite
- (u_n) telle que $u_4 = 7290$ €; $u_5 = 6561$ €; $u_6 = 5904,90$ €; $u_7 = 5314,41$ € Vérifier que cette suite de nombres est une suite géométrique et calculer sa raison.

Cette suite de nombres est géométrique car :

0,50 point

La raison de la suite géométrique est q = 0,9

0,50 point

3) Déterminer en fonction de n, le terme u_n de cette suite.

1 point

$$U_n = U_1 \cdot q^{n-1} = 10\ 000 \times 0.9^{n-1}$$

4) A partir de quelle année la valeur du pont est inférieure à 1 000 €?

1.5 point

$$1\ 000 = 10\ 000 \times 0.9^{n-1} \Rightarrow 0.1 = 0.9^{n-1} \Rightarrow \ln 0.1 = (n-1) \ln 0.9 \Rightarrow n = 1 + \frac{\ln 0.1}{\ln 0.9} \Rightarrow n = 22.8$$

soit n = 23

La valeur du pont sera inférieure à 1 000 € en 2023

SCIENCES PHYSIQUES: 5 points

1) Calculer la masse de la charge maximale à soulever (plateau + charge)?

0,25 point

$$masse\ totale = 300 + 2\ 500 = 2\ 800\ kg$$

Dans ces conditions, quelle serait la force exercée par la partie mobile du vérin pour maintenir l'ensemble en équilibre ?

0,25 point

poids
$$P = 2800 \times 9,8 = 27440 \text{ N}$$

La force qui devra être transmise au pont sera de 2744 daN

2) Calculer la section S_2 de la tige du vérin. La réponse sera donnée en cm² à 10^{-1} près. 0,50 point Section de la tige du vérin $S_2 = \pi \times 2,1^2 = 13,9$ cm²

En déduire la pression exercée par le fluide, en bars à l'unité près, pour soulever la charge maximale. (Rappel: 1 bar = 1 daN /cm²).

0,50 point

Pression du fluide
$$P = \frac{F}{S} = \frac{2744}{13.9} = 198 \text{ bars}$$

En utilisant la notice, calculer la vitesse moyenne de montée du pont par rapport au sol.
 La réponse sera donnée en m/s, à 10⁻³ près.
 0,50 point

Vitesse moyenne de montée $v = \frac{1.7}{30} = 0.057 \text{m/s}$

4) On suppose que le débit de la pompe est de 4,75 L/min. Le diamètre de la canalisation d'alimentation du vérin est de 8 mm. Calculer S₁, la section de cette canalisation, puis la vitesse v₁ d'écoulement du fluide. La réponse sera donnée en m/s à 10⁻² près. 1 point

$$S_1 = \pi \times (4.10^{-3})^2 = 5,026.10^{-5} \text{ m}^2$$

Débit de la pompe Q = 4,75 L/min = 7,92 × 10⁻⁵ m³/s
Q = $S_1.v_1$ $v_1 = Q / S_1 = 7,92.10^{-5} / (5,026.10^{-5})$
 $v_1 = 1,57 \text{ m/s}$

5) En utilisant l'équation de continuité, retrouver le résultat de la question 3)

1 point

$$S_1 v_1 = S_2 v_2$$

 $v_2 = \frac{S_1}{S_2} \times v_1 = (\frac{D_1}{D_2})^2 \times v_1$

Vitesse d'écoulement :
$$v_2 = (\frac{8}{42})^2 \times 1,57 \Rightarrow v_2 = 5,68.10^{-2} \text{ m/s}$$

soit 0.057 m/s

BACCALAUREAT PROFESSIONNEL CARROSSERIE - Option CONSTRUCTION et REPARATION

Session 2003

6) La viscosité cinématique de l'huile est d'environ 40 cSt. (1 cSt = 10⁻⁶ m²/s). La vitesse d'écoulement dans la canalisation d'alimentation est de 1,57 m/s. Le diamètre de la canalisation est de 8 mm.

Calculer le nombre de Reynolds Re à l'unité près.

0,75 point

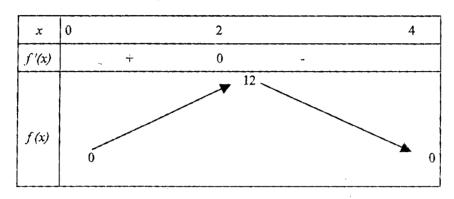
La viscosité cinématique de l'huile :
$$40 \text{ cSt} = 40 \times 10^{-6} \text{ m}^3/\text{s}$$

Diamètre D = $8 \text{ mm} = 8 \times 10^{-3} \text{ m}$
v = $157 \text{ cm/s} = 1,57 \text{ m/s}$

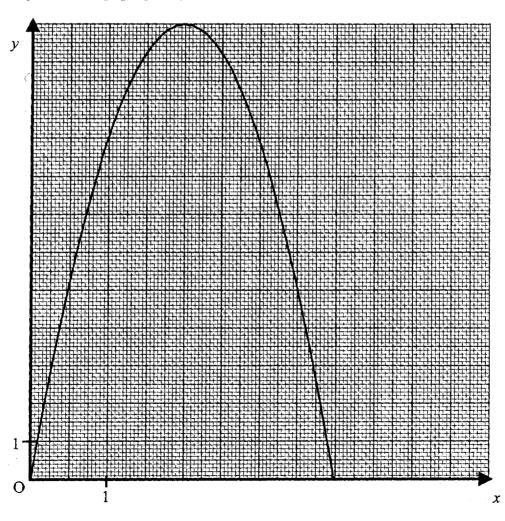
nombre de Reynolds $R_e = \frac{8 \times 10^{-3} \times 1,57}{40 \times 10^{-6}} \Rightarrow R_e = 314$

En déduire le type de régime d'écoulement de l'huile.

0,25 point


Régime d'écoulement du fluide : laminaire

ANNEXE A


EXERCICE I : Tableau de valeurs à compléter

x	0	0,3	0,6	0,9	1,2	1,5	1,8	2,1	2,3	3	3,5	4
f(x)	0	3,3	6,1	8,4	10,1	11,3	11,9	12,0	11,7	9,0	5,3	0

Tableau de variation à compléter

Représentation graphique de f

