7	Académie		Session:	. T
	Examen:		Série :	
	Spécialité	/option :	Repère	Repère de l'épreuve :
	Épreuve/s	Épreuve/sous épreuve :		
	NOM			
) SNV	(en majuscule, Prénoms	(en majuscule, suivi s'il y a lieu, du nom d'épouse) Prémoms	n° du c	n° du candidat :
ď	Né(e) le		(le numèro est celu	(le numèro est celui qui figure sur la convocation ou liste d'appel)
E				
ECKIK		N° BEP :		
IEN I				
NE BI		N° CAP :		
		NOTATION DE L	L'ÉPREUVE EP3	<u>8</u>
V ST rad v		alloid ja Mille		1
AFFLICATIO		MENIÇUE		
Questionnaire	naire	٢)		
Problème		13		
	Total	/ 20	BEP	CAP
			X 1,5	8,0 X
			/ 30	/16
EXPÉRIMEN	TENTATION	NO.	T	+
		L		
			BEP	CAP
		Report	/ 30	/ 24
			11	
			BEP	CAP
		NOTATION EP3 :	09 /	/ 40
		J		
		Soit	/ 20	/20
BEP/CAP ÉLECTRO	TROTECHNIQUE	QUE	51 25502 / 50 25508	SUJET N° 4 Session 2003
EP 3 : EXPÉRIN	TENTATION	EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Cocf. : 3 ou 2 Page 1 / 16

Application numérique

Domaine S0.7 – Courants alternatifs sinusoïdaux polyphasés : Lois générales des courants alternatifs polyphasés à variation sinusoïdale.

QUESTIONNAIRE

1. Remplir le tableau ci-dessous en spécifiant (en cochant les bonnes cases) pour chaque ligne le symbole de la grandeur spécifiée et le symbole de son unité :

		S	ymbole					Unité		
Grandeur	W	$W_{\rm R}$	S	P	Q	var	VA	Wh	W	varh
Puissance active										
Puissance réactive										
Puissance apparente										
Energie active										
Energie réactive										

/ 1,5

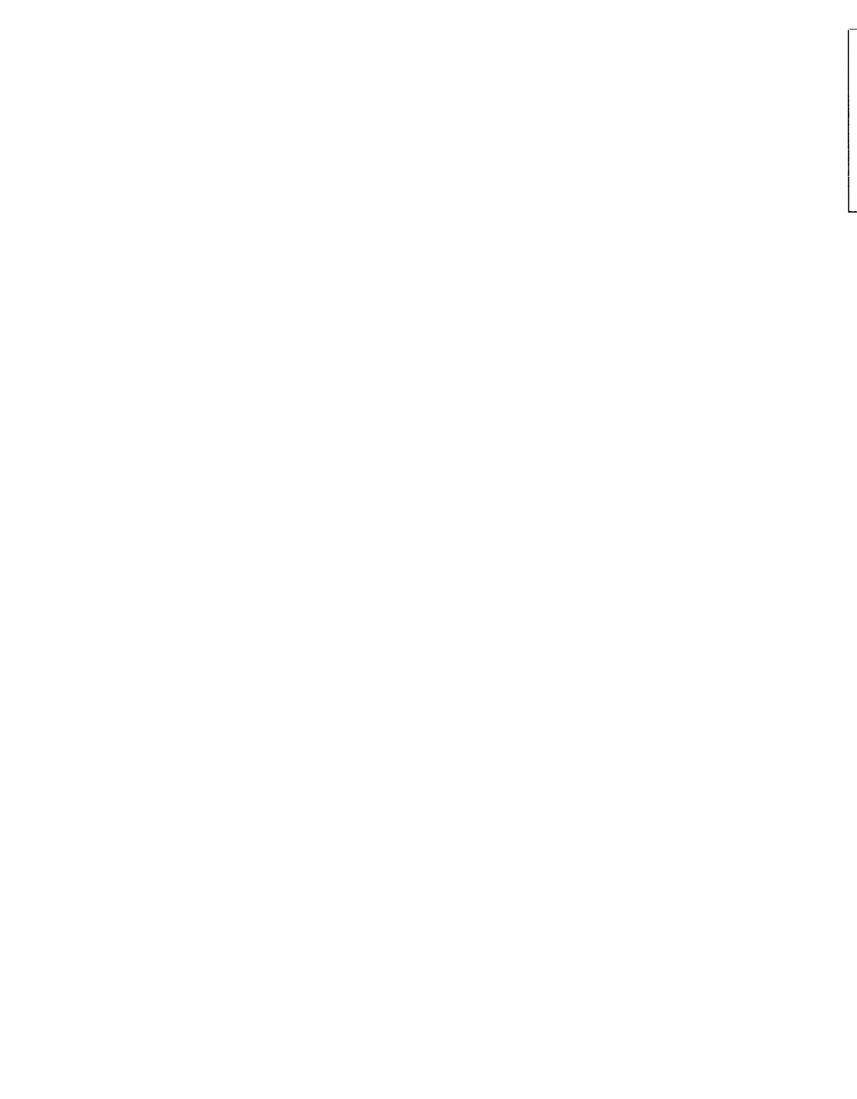
2.		ne installation triphasé co lles vraies ?	mportant plusie	urs récepte	urs, les affirmations suivante	S
	>	La puissance active de l' actives de chacun des réc			-	
		VRAI		FAUX		
	>	La puissance réactive de l'installation s'obtient en additionnant les puissances réactives de chacun des récepteurs en fonctionnement.				
		VRAI		FAUX		
	>	La puissance apparente capparentes de chacun de			n additionnant les puissances nent.	
		VRAI		FAUX		
						/1

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 2 / 16

C'est l'énergie active qui est facturée par le fournisseur d'énergie.							
VRAI		FAUX					
La relation qui permet de calcul	ler cette énergie	est $W = Pt$					
VRAI		FAUX					
Le compteur wattheuremètre permet la mesure de cette énergie							
VRAI		FAUX					

/1

- **4.** Le comptage de l'énergie s'effectue en mesurant l'énergie active et l'énergie réactive (pour les installations industrielles) :
 - Le fournisseur d'énergie impose actuellement que, pour ne pas être facturée, l'énergie réactive ne doit pas dépasser un certain pourcentage de l'énergie active, lequel?


100%	73,2%	40%	173%	20%

• C'est donc que le facteur de puissance moyen d'une installation doit être :

$\cos \varphi = 1$	$\cos \varphi = 0,732$	$\cos \varphi < 0.5$	$\cos \varphi > 0.928$	$\cos \varphi < 0.8$

/1

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 3 / 16

5. Pour une installation triphasée équilibrée, ajouter une batterie de condensateurs, de capacité correcte, en dérivation sur une installation trop inductive (trop d'énergie réactive) permet de :

Rayer les propositions fausses						
Augmenter la puissance réactive	Diminuer la puissance réactive	Ne modifie pas la puissance réactive				
Augmenter la puissance active	Diminuer la puissance active	Ne modifie pas la puissance active				
Augmenter la puissance apparente	Diminuer la puissance apparente	Ne modifie pas la puissance apparente				
Augmenter l'intensité du courant en ligne	Diminuer l'intensité du courant en ligne	Ne modifie pas l'intensité du courant en ligne				

/ 1,5

6. Une installation triphasée équilibrée BTA 400 V- 50 Hz, a une puissance active de 80 kW et une puissance réactive de 60 kvar.

La puissance apparente de l'installation est :

140 kVA	60 kVA	80 kVA	100 kVA	20 kVA
		1 101		

L'intensité du courant en ligne est :

250 A	122 A	144 A	90 A	43 A

7 1

_ / /

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 4 / 16

		: :

PROBLEME D'APPLICATION NUMERIQUE

Une installation triphasée 230/400 V- 50 Hz comporte :

- un moteur triphasé de puissance utile 10 kW, de rendement 80% et de $\cos \varphi = 0.72$.
- un éclairage fluorescent réparti de façon équilibrée en 3 rangées de 30 réglettes 60 W, 230 V-50 Hz et de facteur de puissance 0,5

Il vous est demandé d'effectuer le travail suivant afin de dimensionner les équipements de l'installation :

1. Calculer l'intensité du courant en ligne absorbé par le moteur (qui fonctionne en charge nominale).

/ 2

2. Calculer l'intensité du courant absorbé lorsque fonctionnent ensemble le moteur et l'éclairage.

/ 4

3. Calculer le facteur de puissance global de l'installation lorsque l'ensemble fonctionne.

/ 1

4. Au bout de 800 h de fonctionnement de l'ensemble, quelles seront les consommations enregistrées par les compteurs d'énergie active et d'énergie réactive ?

5. L'installation doit-elle être compensée ? justifier la réponse.

l'on installe un bloc de compensation triphasé de 15 kvar :

/3

/1

/ 13

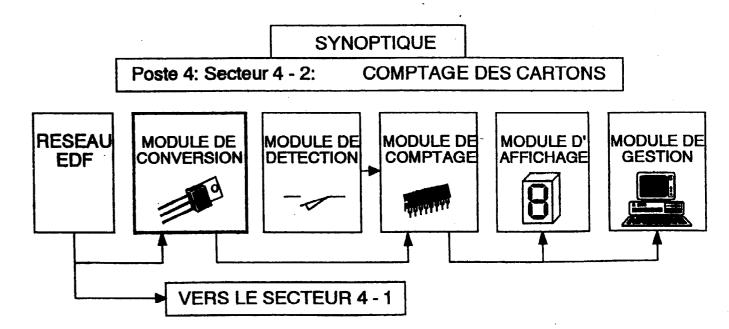
BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 5 / 16

6. Calculer le nouveau facteur de puissance et l'intensité du courant en ligne si

CHAINE D'EMBALLAGE ET DE PESAGE

DANS UNE USINE DE FILATURE

En fin de chaine de production automatisée de bobines de fils, il a été réaliser un ensemble de cinq postes permettant l'emballage et le pesage de cartons contenant les bobines de fils.

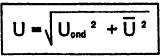

Le poste 4 est divisé en deux secteurs:

le secteur 4 - 1, assure le pesage des cartons pleins.

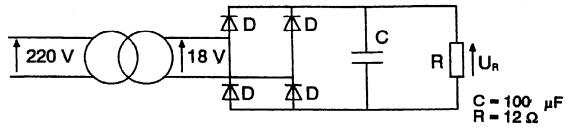
le secteur 4 - 2, assure le comptage des cartons pleins.

Le comptage des cartons n'est plus effectué en raison d'une panne sur le module de conversion d'énergie.

Le convertisseur ~ / _ assure l'alimentation du module de comptage (U = 12 V, I = 1 A), constitué pour l'essentiel de circuits intégrés.


RECOMMANDATIONS:

La manipulation se décompose en trois parties qui doivent impérativement être traitées dans l'ordre proposé.


Le candidat dispose d'un montage précablé sur circuit imprimé.

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 6 / 16

OBJECTIFS: Etre capable de vérifier la relation

Soit le montage suivant.

On dispose de deux mesureurs; Le N°1 est un mesureur RMS avec position AC + DC Le N°2 est un mesureur RMS avec position AC

TRAVAIL DEMANDE

Mesurer la valeur efficace U_R et la valeur moyenne U_R à l'aide du mesureur N°1

Références du mesureur:	Position du commutateur:	

U _R =	AC + DC	A
Ū _R =	DC	

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 7 / 16

Mesurer la valeur efficace de l'ondulation U_{Road} et la valeur moyenne U_R à l'aide du mesureur N°2

Références du mesureur:	Position du commutateur:

U _{R and} =	AC
Ū _B =	DC

CALCULS:

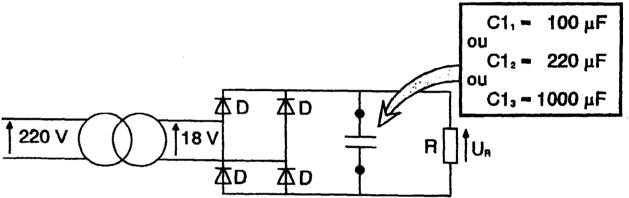
$$U_{R} = \sqrt{U_{Rond}^{2} + \overline{U}_{R}^{2}}$$

Comparer ce résultat avec la mesure A

Brancher un mesureur magnéto-électrique (avec redresseur) aux bornes de la résistance R.

Références du mesureur:	Position du commutateur:
	~

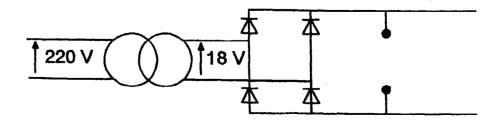
BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 8 / 16


Comparer la valeur mesurée aux valeu	us précédentes.	•	
Dans quel cas cet appareil mesure-t-il	une valeur efficace?		

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 9 / 16

PARTIE N° 2

OBJECTIF: Etre capable de faire le choix du condensateur de filtrage.


Soit le montage suivant.

Le condensateur C1 est détérioré, il faut le remplacer. On dispose de trois condensateurs C1, C12 et C13, mesurer pour chacun d'eux:

- la valeur efficace Un
- la valeur moyenne U_R
- la valeur crête maximale Un
- la valeur crête minimale Un

Faire un schéma de montage en insérant les appareils de mesures.

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET Nº 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 10 / 16

Tableau des relevés:

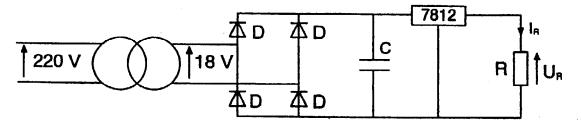
MESUREURS			VALEURS			
	Références du mesureur	Calibre	Position du commutateur	C1,	C1 ₂	C1 ₃
Un			***************************************			
ÜR	••••••	•••••				
Ûn						
Ŭ,		••••••	***************************************			

On désire obtenir une alimentation en 12 V constant d'ou l'utilisation d'un régulateur.

D'après la documentation Annexe A, indiquer ci dessous la valeur mini de la tension d'entrée d'un régulateur 7812.

Quel est le condensateur que vous choisissez?

\sim			
C	_	***************************************	


BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 11 / 16

OBJECTIF: Etre capable de faire le choix du dissipateur.

Soit le montage suivant:

Le régulateur est raccordé sur la platine, sans le dissipateur.

Faire un essais en mesurant le courant la, afin de mettre en évidence le comportement du régulateur (sans dissipateur).

Que constatez-vous sur l'évolution de la température du régulateur?

onstatez-vous sur l'évolution du cou	rant IR?		
oit être le rôle du dissipateur, fixé s		 	

Lire l'annexe B

Rechercher dans l'annexe A les variables nécessaires au choix du dissipateur.

Les regrouper dans le tableau ci-après.

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 12 / 16

		;

Тј						
Tamb						
Pd						
Rth(j-c)						
Rth(c-r)						
Calculer la résistance thermique dissipateur / ambiance.						
Rth(r-amb) = ()						
Rth(r-amb) =						
Choisir le dissipateur dans l'annexe A						
Références :						
Fixer le dissipateur sur le boitier (Dissipateur à réclamer à l'examinateur).						
Faire un essai en mesurant le courant la.						
Vérifier que la tension aux bornes de la charge soit une tension continue.						
Le dissipateur remplit-il son rôle?						
Que se serait-il passé si vous aviez choisi un dissipateur dont sa Rth(r-amb) < Rth(r-amb) _(calculte) ?						
1						

51 25502 / 50 25508

Durée : 4 H 00

SUJET N° 4

Coef.: 3 ou 2

Session 2003

Page 13 / 16

BEP/CAP ÉLECTROTECHNIQUE

EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE

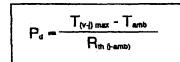
	© Entrée @ Sortie G Référence			1		T(v-j) = 150 °C	Tamb= 25 °C	PD=10 W	Rth(j-c) = 2 °C / W	Rth(oc) = 3°C / W		Attention au fitrage en amont pour que U minimale ≥ Entrée minimale			75 100 125 150 nm 75 100 125 150 nm Resistance themsque: 28 °C/W
필	Sortie (3		Rog(81	120	160	200	3	99	084	antion au ninimale 2		ř	Materiel: Au Resistance the
CHNIQ	Entrée @		Regun		9 <u>0</u>	120	160	Ş Ş		94 94	8	u		<u> </u>	
DOCUMENTATION TECHNIQUE	⊝		ing mAde me a		0 80	.	0.9	° .	:	e -	.	Reg., : régulation amont (*) Reg., : régulation aval (*) Po : puissance maxima dis		WA 126	WA 400—9P
NTA		TO-220	-		Я	Я	A	я я	,	В	Ş	gulatio gulatio issanc			
SME	W. C.	2 H	Ì		7.0	:	20.	2 5	;	-+	27	1.4 			
8	Ĥ		Nin-Val Vde nin max	vcs :	-	-	-	2 8			9	28.00		W 21	\$£ \$\frac{1}{5} \frac{1}{5}
	N G		<u> </u>	ositi	20	2 3	;	2 2	;	n	2			Mathel: An aroles no Résilanz Demins: 12 °C/M	
	TENSIO		lo mAdc mex	sortie positives	1500	200		500	5	3 3	800	: nande (TEUR		Nother: Restance	
1 1	A DE		Ja V C		_	χ. :			_	_	ç	sortice sortice sortice commission	• • •		
_	VTEU!		> > <u>F</u>	tensions de	7	ž ;		= =	E	<u> </u>		ion de lon de sité de sité de		-2	
ANNEXE A	REGULATEUR DE TENSION FIXE		, . , .	fen.	MC7805C	MC7806C	2000	MC7815C	14C 78 18C	7918/	MC/824C	V. Tension d'entrée V. Tension de sortie L. Intensité de sortie I. Intensité de commande CHOIX DU DISSIPATEUR		WA 361—2	WA 116
								-	- : -	 -					

	00330 037 00330 13	A CIN MININI INC.	
	80557 05 / 70557 15	SUJET Nº 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 14 / 16

ANNEXE B

CHOIX D'UN DISSIPATEUR (RADIATEUR)

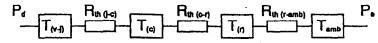
Puissance dissipable par un semi-conducteur:


La puissance dissipée maximale par un semi-conducteur dépend de la température du

boîtier (T.). Elle est définie conventionnellement pour une température ambiante de 25 °C et déduite de la température maximale de la jonction (Trop mu) et de la résistance thermique jonction-boîtier (R_{n to}) à l'aide de la relation:

$$P_{\text{tot}} = \frac{T_{\text{(v-1) max}} - 25}{R_{\text{tot (1)-tot}}} = \text{Cte}$$

Si la température dépasse la valeur $T_{\rm reg}$ aux, la puissance dissipable est nulle, il y a destruction de la jonction. Pour maintenir une température ambiante acceptable, il est nécessaire de monter le composant sur un dissipateur ou radiateur. Dans ce cas:



Détermination du dissipateur:

Chaîne thermique ionction-air ambiant:

L'écart entre les deux températures se calcule en appliquant la loi d'Ohm thermique.

P₄ P. : Pulssance à dissiper par la jonction (en W)

: Puissace évacuée

Too : Température maximale de la jonction (en °C) (donnée par le constructeur)

T_(c) : Température maximale du boîtier (en °C) (donnée par le constructeur)

: Température du dissipateur (en °C) : Température ambiante (en °C)

: Résistance thermique jonction-boîtier (en °C/W) (donnée par le constructeur) : Résistance thermique boîtier-radiateur (en °C/W) (donnée par le constructeur)

: Résistance thermique radiateur-air ambiant (en °C/W)

(donnée par le fabricant du dissipateur)

Valeur de la résistance thermique du dissipateur:

On la déduit de la relation (1)

$$R_{th (r-amb)} = \frac{T_{(v-j)} - T_{amb}}{P_d} - (R_{th (j-c)} + R_{th (c-r)})$$

La valeur calculée de Rin (ramb) permet de choisir à l'aide des caractéristiques des dissipateurs celui qui convient le mieux, avec

[R_{M (rema)} calculée > R_{M (rema)} donnée par le fabricant du dissipateur] compte tenu également des critères mécaniques.

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef. : 3 ou 2	Page 15 / 16

EVALUATION DU THEME D'EXPERIMENTATION

- Chaque partie est évaluée :
 pour 50 % en déroulement
 pour 50 % en compte-rendu

Partie 1	
Total partie 1	
Partie 2	·
Total partie 2	
Partie 3	
Total partie 3	

NOTE /30 /24

BEP/CAP ÉLECTROTECHNIQUE	51 25502 / 50 25508	SUJET N° 4	Session 2003
EP 3 : EXPÉRIMENTATION SCIENTIFIQUE ET TECHNIQUE	Durée : 4 H 00	Coef.: 3 ou 2	Page 16 / 16