N° de paillasse :	N° d'inscription :
-------------------	--------------------

PRATIQUE SUJET Nº 6

Tous les candidats devront remettre cette feuille aux examinateurs avant de commencer la manipulation du 1^{er} dosage.

QUESTIONS PRÉALABLES AU 1er DOSAGE

- 1. Calcul de la concentration molaire de la solution (M)
 - a) Calculer la concentration massique de la solution (M). Détailler votre calcul.
 - b) En déduire la concentration molaire de cette solution. Détailler votre calcul.

<u>Donnée</u>: Masse molaire moléculaire: M(KMnO₄) = 158 g/mol.

- 2. Calcul de la concentration massique de la solution (S)
 - a) Calculer le facteur de dilution, f_d , de la solution (S) par rapport à la solution (M). Détailler votre calcul.
 - b) Calculer la concentration massique de cette solution en utilisant le facteur de dilution. La donner en g/L, puis en mg/L.
- 3. Calcul de la concentration massique volumique de la solution (S1)

Compléter le tableau ci-dessous. Expliquer brièvement les calculs.

solution	facteur de dilution par rapport à (S)	concentration massique en mg/L
S_1		

CAP EMPLOYE TECHNIQUE DE LABORATOIRE		Code 50 22 002	Session Juin 2003
EPREUVE: TRAVAUX PRATIQUES CHIMIE N° 6	Durée : 3 heures	Coef.: 4	Page : 1/5

SUJET Nº 6

N.B. LES DEUX DOSAGES A ET B SONT INDÉPENDANTS.

- Lecture des descentes de burette à la ½ division.
- Les résultats des concentrations seront donnés avec 3 chiffres significatifs.
- Dans la suite du document, ce symbole signifie « appeler l'examinateur ».

A-1^{er} DOSAGE

DOSAGE D'UNE SOLUTION DE PERMANGANATE DE POTASSIUM PAR COLORIMÉTRIE

1) Préparation d'une solution (M) de permanganate de potassium (K⁺ + MnO₄)

Appel n° 1. Faire la pesée devant l'examinateur.

- 1) Peser une masse exactement égale à 0,200 g de cristaux de permanganate de potassium.
- 2) Dissoudre cette masse et préparer exactement 200,0 cm³ de solution. Cette solution est la solution M.

2) Préparation d'une solution S, de permanganate de potassium, à partir de la solution (M)

Appel n° 2. Effectuer une des dilutions en présence de l'examinateur.

- 1) Prélever à l'aide d'une pipette jaugée de 10 mL, exactement 10,0 mL de la solution (M).
- 2) Les introduire dans une fiole jaugée de 100 mL. Compléter avec de l'eau déminéralisée. La solution ainsi obtenue est la solution (S).

3) Préparation de la gamme étalon à partir de la solution (S).

Préparer les solutions diluées S₁, S₂, S₃, S₄, à partir de la solution (S) de permanganate de potassium, en opérant comme indiqué ci-dessous :

solution à préparer	volume de solution (S) à prélever	volume de solution à préparer
S_1	5,0 mL	50,0 mL
S_2	10,0 mL	50,0 mL
S ₃	25,0 mL	100,0 mL
S ₄	20,0 mL	50,0 mL

4) Mesure au spectrocolorimètre des absorbances des solutions S₁, S₂, S₃, S₄, et d'une solution X de permanganate de potassium (à doser).

- Appel n° 3. Faire vérifier les réglages du spectrocolorimètre et effectuer les mesures devant l'examinateur.
 - 1) Vérifier la longueur d'onde de l'appareil à $\lambda = 530$ nm à l'aide de la fiche technique fournie.
 - 2) Régler le zéro de l'appareil avec de l'eau distillée.
 - 3) Mesurer et noter les absorbances (A) des différentes solutions S₁, S₂, S₃, S₄ et X. Compléter le tableau de résultats correspondant (feuille de résultats).

CAP EMPLOYE TECHNIQUE DE LABORA	G T : 2002		
		Code 50 22 002	Session Juin 2003
EPREUVE: TRAVAUX PRATIQUES CHIMIE N° 6	Durée : 3 heures	Coef.: 4	Page : 2/5

B – 2^{ème} DOSAGE

DOSAGE D'UNE SOLUTION D'HYDROXYDE DE SODIUM PAR UNE SOLUTION DE RÉFÉRENCE D'ACIDE SULFURIQUE

Dosage de la solution d'hydroxyde de sodium par la solution d'acide sulfurique donnée.

Appel n° 4. Appeler l'examinateur avant le 2ème essai.

Technique:

* erlen :

exactement 10 cm³ de solution d'acide sulfurique distribuée

+ 3 gouttes de B.B.T. (bleu de bromothymol)

* burette : solution d'hydroxyde de sodium que l'on verse jusqu'à coloration vert/bleu pâle.

Noter les résultats obtenus sur la feuille de résultats.

CAP EMPLOYE TECHNIQUE DE LABORATOIRE		Code 50 22 002	Session Juin 2003
EPREUVE : TRAVAUX PRATIQUES CHIMIE Nº 6	Durée : 3 heures	Coef.: 4	Page : 3/5

A ne donner aux candidats que lorsque la première partie du compte-rendu a été rendue aux examinateurs.

COMPTE RENDU - SUJET Nº 6

I - COMPTE RENDU DU 1er DOSAGE

Tracé de la droite d'étalonnage.

a) Faire la représentation graphique de la fonction :
 A = f (concentration massique en mg/L)

Echelle:

1 cm pour 2 mg/L

2 cm pour 0,1 unité de A

b) A l'aide de cette représentation graphique, donner la concentration massique de la solution X en g/L.

II - COMPTE RENDU DU 2ème DOSAGE

1) Donner:

a) le principe de ce dosage,

b) l'équation de réaction de ce dosage.

2) Calculer la concentration molaire de la solution d'hydroxyde de sodium distribuée sachant que la relation à l'équivalence est :

$$C_{B} = \frac{2.C_{A}.V_{A}}{V_{B}}$$

Avec C_B: concentration molaire de la solution d'hydroxyde de sodium à doser.

C_A: concentration de la solution d'acide sulfurique donnée.

 V_A : volume d'acide sulfurique utilisé en cm³.

V_B : volume d'hydroxyde de sodium versé en cm³.

CAP EMPLOYE TECHNIQUE DE LABORATOIRE		Code 50 22 002	Session Juin 2003
EPREUVE: TRAVAUX PRATIQUES CHIMIE Nº 6	Durée : 3 heures	Coef.: 4	Page: 4/5

N° de paillasse :	4.		N° d'inscriptio	n :	
T.P. N° 6					
]	FEUILLE DE	E RÉSULTAT	<u>'S</u>	
1er DOSAGE:					
DOSAC	GE D'UNE SO		PERMANGANA DRIMÉTRIE	TE DE POTA	ASSIUM
Tableau de résultats.					
Compléter le tableau P.S.: Les concentrat	ı ci-dessous à l tions massique	aide des résulta s des solutions p	ts des mesures fa réparées sont dor	ites au spectro mées dans le ta	colorimètre. ıbleau.
solutions	S_1	S_2	S_3	S ₄	X
concentrations massiques en mg/L	10,0	20,0	25,0	40,0	(à déterminer)
Absorbance (A)					
2 ^{ème} DOSAGE : DO Résultats du dosage :	PAR UNI	E SOLUTION I	D'HYDROXYD D'ACIDE SULF	URIQUE	
Na ⁺ + OH (en cm		sai rapide	1 ^{er} essai		2 ^{ème} essai
Volume moyen :	.				

CAP EMPLOYE TECHNIQUE DE LABORATOIRE		Code 50 22 002	Session Juin 2003
EPREUVE: TRAVAUX PRATIQUES CHIMIE Nº 6	Durée : 3 heures	Coef.: 4	Page : 5/5

N° de paillasse :	N° d'inscription :
	PRATIQUE SUJET N° 7
QUESTIONS PRÉALABLES (t	emps conseillé : 10 minutes)
Vous devez diluer exactement au ½ 100 cm³ de solution S ₁ .	4 une solution de thiosulfate de sodium S ₀ , de façon à obtenir
1) Calculer le volume de solution	S_0 à prélever pour préparer cette solution. (Expliquer le calcul).
Réponse :	
2) Donner la liste du matériel spéc	ifique nécessaire pour réaliser cette dilution.
Réponse :	

CAP EMPLOYE TECHNIQUE DE LABORATOIRE		Code 50 22 002	Session Juin 2003
EPREUVE: TRAVAUX PRATIQUES CHIMIE N° 7	Durée : 3 heures	Coef.: 4	Page : 1/5

SUJET Nº 7

N.B. LES DEUX DOSAGES A ET B SONT INDÉPENDANTS.

- Lecture des descentes de burette à la ½ division.
- Les résultats des concentrations seront donnés avec 3 chiffres significatifs.
- Dans la suite du document, ce symbole signifie « appeler l'examinateur ».

A – 1^{er} DOSAGE

DOSAGE pH-MÉTRIQUE D'UN VINAIGRE (ACIDE ÉTHANOÏQUE/CH₃COOH) PAR UNE SOLUTION D'HYDROXYDE DE SODIUM

A) Etalonnage du pH-mètre :

Appeler l'examinateur pour l'évaluation de cette manipulation.

1) Etalonner le pH-mètre avec les solutions tampons fournies.

B) Dosage du vinaigre par la solution B d'hydroxyde de sodium :

- Appeler l'examinateur pour l'évaluation de la préparation du bécher.
- 1) burette : solution B d'hydroxyde de sodium à 1,00 mol/L
- 2) bécher : exactement 10,0 cm³ de vinaigre + environ 60 cm³ d'eau distillée
- 3) Réaliser le montage.

Appeler l'examinateur pour vérifier le montage.

4) Réaliser le dosage :

Noter les résultats dans le tableau de mesures joint.

C) Réalisation du graphique :

Une feuille de papier millimétré est fournie avec le sujet.

Faire une représentation graphique $pH = f(V_B)$

Unités graphiques :

abscisse:

1 cm pour 1 cm³

ordonnée :

1 cm pour 1 unité pH

CAP EMPLOYE TECHNIQUE DE LABORATOIRE		Code 50 22 002	Session Juin 2003
EPREUVE: TRAVAUX PRATIQUES CHIMIE N° 7	Durée : 3 heures	Coef.: 4	Page : 2/5

B-2^{ème} DOSAGE

DOSAGE D'UNE SOLUTION DE DIIODE (I_2) PAR UNE SOLUTION DE THIOSULFATE DE SODIUM ($2Na^+$, $S_2O_3^{\ 2}$)

I - Préparation de la solution S₁ de thiosulfate de sodium.

Appeler l'examinateur pour évaluer la dilution.

- Prélever à l'aide d'une pipette jaugée 25,0 mL de la solution de thiosulfate de sodium S₀.

- Les introduire dans une fiole jaugée de 100,0 mL, puis compléter avec de l'eau déminéralisée.

II - Dosage de la solution de diiode par la solution de thiosulfate de sodium S₁.

Erlen: exactement 10,0 cm³ de solution de thiosulfate de sodium S₁.

+ une pointe de spatule de thiodène.

Burette: solution de diiode

Appeler l'examinateur pour l'évaluation de la préparation de la burette

Verser le diiode jusqu'à coloration bleue.

Appeler l'examinateur avant le 2ème essai.

COMPTE RENDU - SUJET Nº 7

I – COMPTE RENDU DU 1er DOSAGE

- a) Donner le principe et l'équation chimique de ce dosage.
- b) Déterminer le volume équivalent V_{eq} par la méthode des tangentes.
- c) Déterminer la relation molaire à l'équivalence.
- d) Calculer la concentration molaire de l'acide éthanoïque contenu dans le vinaigre.
- e) En déduire la concentration massique de l'acide éthanoïque. Donnée : acide éthanoïque : CH₃COOH (M = 60 g/mol)
- f) Déterminer le titre en degré acétique du vinaigre en utilisant la définition suivante : « titre en degré acétique = masse d'acide éthanoïque en g pour 100 cm³ de vinaigre ».

II – COMPTE RENDU DU 2ème DOSAGE

- a) Calculer la concentration molaire de la solution diluée de thiosulfate de sodium.
- b) Ecrire le principe et les équations de ce dosage.

Données:

pouvoir oxydant croissant I_2 I_2 I_3 I_4 I_4 I_5 I_6 I_8 I_9 $I_$

- c) Ecrire la relation molaire à l'équivalence.
- d) Calculer la concentration molaire de la solution de diiode.

$$C_{I_2} = \frac{C_{s_2 \circ_3^{2^-}} \times V_{s_2 \circ_3^{2^-}}}{2 \times V_{I_2}}$$

C₁, : concentration molaire de la solution de diiode

 $C_{s,o_s^{2-}}$: concentration molaire de la solution de thiosulfate de sodium

 $V_{s,o_{\tau}^{2^{-}}}$: volume de thiosulfate de sodium utilisé en cm 3 .

 V_{i_1} : volume versé à l'équivalence en cm³.

CAP EMPLOYE TECHNIQUE DE LABORA	Code 50 22 002	Session Juin 2003		
EPREUVE : TRAVAUX PRATIQUES CHIMIE N° 7	Durée : 3 heures	Coef.: 4	Page : 4/5	

N° de paillas	sse: N° d'inscription :												
T.P. N° 7		F	EUIL	LE DI	E RÉ	SUL	TAT	rs					
1er DOSACE							21111	<u>. D</u>					
1 ^{er} DOSAGE													
DOSAG	GE pH-MÉ PA	TRIQUE I R UNE SC	D'UN ' DLUTI	VINAI(ON D'	GRE HYD	(ACI ROX	DE É' YDE 1	THAN DE SO	NOÏQ ODIU	UE : (M	CH ₃ C	ООН)
		T	TABI	LEAU	DE M	ESU	RES	·					
volume versé en cm³													
pН													
volume versé en cm³													
рН													
Volume à l'équivalence		-								L	L	l	
рН	$V_{eq} = \dots cm^3$												
2 ^{ème} DOSAG	<u>E</u> :												
PA	AR UNE SO	DOSAGE DLUTION								$\mathbf{a}^+ + \mathbf{S}_2$	2O ₃ ² -)		
Résultats du d	osage :				_								
essai	i n° 1			2				3					
volume	ne versé $V_1 =$				$V_2 =$				V ₃ =				

CAP EMPLOYE TECHNIQUE DE LABORATOIRECode 50 22 002Session Juin 2003EPREUVE : TRAVAUX PRATIQUES CHIMIE N° 7Durée : 3 heuresCoef. : 4Page : 5/5

Volume utilisé pour les calculs : V_{I_2} =