CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

Groupement "ES	ST"	Session juin 2004	Code(s) examen(s)	Tirages
Corrigé	BEP Secteur 1			-
	Productique et r	naintenance		
Épreuve : Mathén	natiques et Sciences physiques			
Coefficient: 4	Durée : 2 heur	es Page	1/4	

MATHÉMATIQUES (10 points)

EXERCICE 1 (2 points)

- 1.1. Longueur L pour 2 panneaux : $L = 2 \times (1.062 + 100) + 500$ L
 - L = 2.824 mm

1 pt

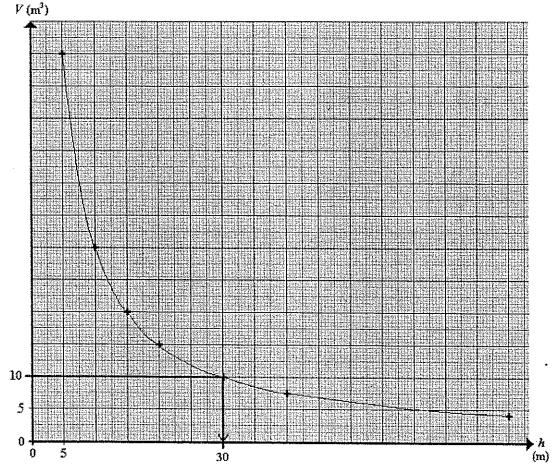
1.2. Combien de panneaux n peut-on installer pour une longueur L de 5,148 m.

$$5\ 148 = n (1\ 062 + 100) + 500$$

$$n = \frac{5148 - 500}{(1062 + 100)}$$

$$n = 4$$
 panneaux

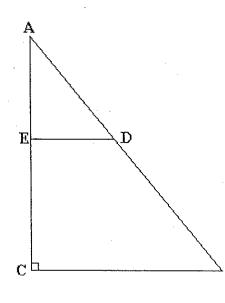
1 pt


EXERICE 2 (4,5 points)

2.1. Tableau de valeurs : $V = \frac{300}{h}$ 1,5 pt

h (m)	5	10	15	20	25	40	75
$V(\text{m}^3)$	60	30	20	15	12	7,5	4

2.2. Représentation graphique de la fonction : V = f(h)


2 pts

2.3. Pour un volume pompé V de 10 m^3 , h = 30 m.

Groupement "ES	Τ''	Session juin 2004	Code(s) examen(s)	Tirages
Corrigé	BEP Secteur 1			
	Productique et ma	intenance		
Épreuve : Mathém	atiques et Sciences physiques			
Coefficient: 4	Durée : 2 heures	Page	: 2/4	

EXERCICE 3 (3,5 points)

$$AC = 1.4 \text{ m}, AB = 2 \text{ m} \text{ et } AE = 0.9 \text{ m}.$$

3.1. Calcul, à 10^{-2} m, de la longueur BC.

$$BC^{2} = AB^{2} - AC^{2}$$

 $BC^{2} = 2^{2} - 1,4^{2} = 2,04$
 $BC = \sqrt{2,04}$
 $BC = 1,43 \text{ m}$

1 pt

3.2. Calcul de la mesure de l'angle \widehat{ABC} . Arrondir le résultat au degré près.

$$\operatorname{abc} = \frac{AC}{ABC} = \frac{AC}{AB} = \frac{1.4}{2} = 0.7 \quad \text{soit} \quad \widehat{ABC} = 44^{\circ}$$

3.3. Calcul de la mesure DE pour BC = 1,43 m.

1,5 pt

$$\frac{DE}{BC} = \frac{AE}{AC} \qquad \text{donc} \quad DE = \frac{AE \times BC}{AC} = \frac{0.9 \times 1.43}{1.4}$$

soit
$$DE = 0.92 \text{ m}$$

Groupement "EST	711	Session juin 2004	Code(s) examen(s)	Tirages
Corrigé	BEP Secteur 1			
	Productique et mai	ntenance		
Épreuve : Mathémat	iques et Sciences physiques			
Coefficient: 4	Durée : 2 heures	Page:	3/4	1

SCIENCES-PHYSIQUES (10 points)

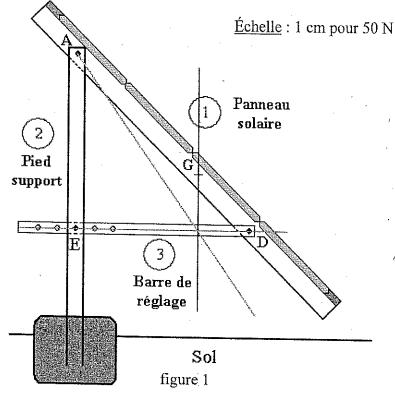
EXERCICE 4 (4 points)

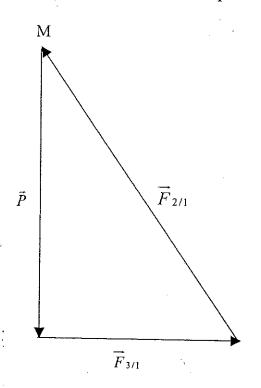
4.1. Calcul de la valeur P du poids du panneau solaire :

$$P = m \times g = 38 \times 10 = 380$$

P = 380 N

0,5 pt


4.2. Tracé de la droite d'action des forces :


$$\vec{P}$$
, $\vec{F}_{2/1}$ et $\vec{F}_{3/1}$.

1 pt

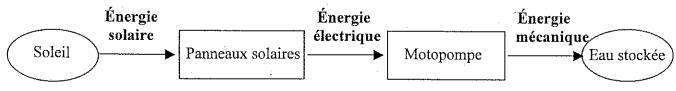
4.3. Construction à partir du point M du dynamique des forces.

1 pt

4.4. Caractéristique des forces $\vec{F}_{2/1}$ et $\vec{F}_{3/1}$ qui s'exercent sur la barre aux points A et D.

Force	Point d'application	Droite d'action	Sens	Valeur (N)
P	G		1	380
$\vec{F}_{2/1}$	A		K	465
$\vec{F}_{3/1}$	D	— · · · · · · · · · · · · · · · · · · ·	→	265

droite d'action 0,25 pt sens $F_{2/1} = 9,3 \times 50 = 465$ N 0,5 pt $F_{3/1} = 5,3 \times 50 = 265$ N 0,5 pt 0,5 pt 0,5 pt


Groupement "ES	T''	Session juin 2004	Code(s) examen(s)	Tirages
Corrigé	BEP Secteur 1			
	Productique et ma	intenance		
Épreuve : Mathém	atiques et Sciences physiques			
Coefficient: 4	Durée : 2 heures	Page	: 4/4	1

EXERCICE 5 (1,5 point)

5.1. La chaîne énergétique du pompage solaire.

0,5 pt

1 pt

5.2. Calcul de l'énergie absorbée E_a :

$$E_{\rm a} = 2\ 500\ 000\ {\rm J}$$

$$\eta = \frac{E_{\rm u}}{E_{\rm a}}$$
; $E_{\rm a} = \frac{E_{\rm u}}{\eta}$; $E_{\rm a} = \frac{1500000}{0.6} = 2500000$
soit $E_{\rm a} = \frac{2500000}{3600} = 694,44$

$$E_a = 694 \text{ Wh}$$

EXERCICE 6 (1,5 point)

6.1.
$$U$$
: tension en volt (V); P : puissance en watt (W)

0,5 pt

6.2. Calcul de la durée
$$t : E = Pt$$
 $t =$

Calcul de la durée
$$t: E = Pt$$
 $t = \frac{E}{P}$ $t = 1,75 \text{ h}$ soit $t = 1 \text{ h} 45 \text{ min}$

0,5 pt

6.3. Calcul de l'intensité *I* à
$$10^{-1}$$
: $I = \frac{P}{U} = \frac{400}{60}$

$$I = 6,7 \text{ A}$$

0,5 pt

EXERCICE 7 (3 points)

$$SiO_2 + C \longrightarrow Si + CO_2$$

0,5 pt

1 pt

 $M(SiO_2) = 28 + 2 \times 16$

$$M(SiO2) = M(Si) + 2 M(O)$$

$$M(SiO2) = 60$$

 $M(SiO_2) = 60 \text{ g/mol}$

1,5 pt

$$m = \frac{M_{\text{SiO}_2}}{M_{\text{Si}}} \times m_{\text{Si}} = \frac{60}{28} \times 1000$$
 $m = 2 143 \text{ g}$