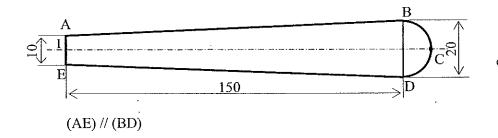

(Groupement des Académies de l'Est	Session 2005	Code examen:	Tirages
	C.A.P. MÉTIERS DES SEC	CTEURS		
SUJET		âtiment létiers de la santé et de l'hygiène		
Épre	uve : Mathématiques et Sciences	Durée : 2 heures	Coef.: 2	page 1/9

N.B: La clarté des raisonnements et la qualité de la rédaction interviendront pour une part importante dans l'appréciation des copies.

L'usage de la calculatrice est autorisé.

Le candidat rédige sur le sujet et rend toutes les feuilles à la fin de l'épreuve.



Un particulier décide d'installer une éolienne afin d'alimenter sa maison en électricité.

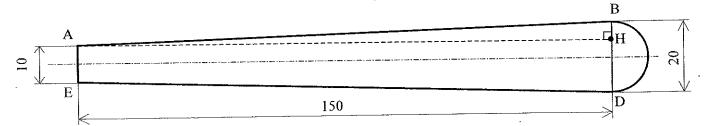
PARTIE MATHÉMATIQUES (10 points)

EXERCICE 1 (4 points)

On étudie une des trois pales de l'éolienne.

Les cotes sont données en centimètres. Le dessin n'est pas à l'échelle.

- 1.1. Nature du quadrilatère ABDE
 - 1.1.1. Cocher la réponse correcte.


ABDE est un	rectangle	losange	trapèze	parallélogramme	carré
1.1.2.	Nommer la droite axe	de symétrie.			

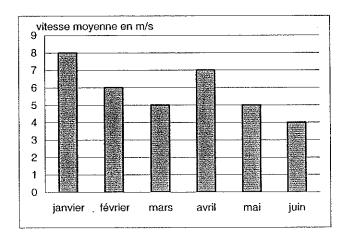
(Groupement des Académies de l'Est	Session 2005	Code examen:	Tirages
SUJET	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TEURS âtiment étiers de la santé et de l'hygiène		
Épre	euve : Mathématiques et Sciences	Durée : 2 heures	Coef.: 2	page 2/9
1.2.1.	Vérifier par le calcul que l'aire de ABDE est 2 250 cm ²			
	Calculer, en cm², l'aire du demi-disque BCD. Arrondir	le récultat à l'unité		•••
1.2.2.	Calculer, en cm ² , 1 aire du deini-disque BCD. Arrondi			

EXERCICE 2 (2,5 points)

Plan d'une pale

Les cotes sont données en centimètres. Le dessin n'est pas à l'échelle.

Dans le triangle rectangle ABH, on donne : BH = 5 cm.


1.2.3. Calculer, en cm², l'aire totale d'une pale.

Calculer, en cm, la longueur AB. Arrondir le résultat au centième.

	Groupement des Académies de l'Est	Session 2005	Code examen:	Tirages
	C.A.P. MÉTIERS DES SE	CTEURS		
SUJET	1 1 10 ductique et maintenance	Bâtiment Métiers de la santé et de l'hygiène		
Épre	euve : Mathématiques et Sciences	Durée : 2 heures	Coef.: 2	page 3/9

EXERCICE 3 (3,5 points)

Le diagramme ci-dessous indique les vitesses moyennes mensuelles ν du vent pendant les six premiers mois d'une année.

3.1. Compléter le tableau ci-dessous :

3.4.1. Compléter le tableau ci-dessus.

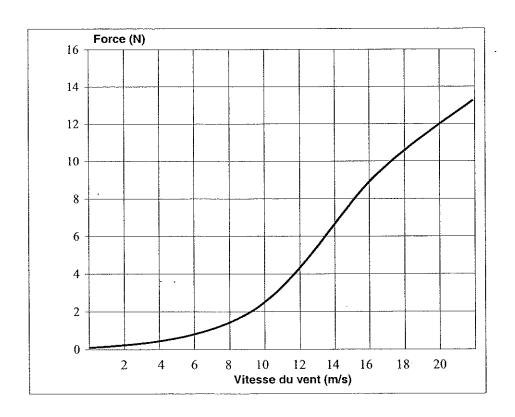
3.4.2. Ecrire, en km/h, la vitesse moyenne du vent en janvier.

mois	janvier	février	mars	avril	mai	juin
ν (m/s)	8		5			

3.2. Calculer, en m/s, la vitess	e moyenne du vent pen	dant ces six mois. Arrondir l	e résultat au dixième.
		· · · · · · · · · · · · · · · · · · · ·	
3.3. Nommer les mois durant	lesquels la vitesse moye	enne du vent est supérieure à	5,5 m/s.
······································	·		
		d	
3.4. Le tableau de proportion	iante ci-dessous permei	de convernr une vitesse en i	nys en une vresse en knyn.
Vitesse en m/s	5	7	8
Vitesse en km/h	18		

	Groupement des Académies de l'Est	Session 2005	Code examen :	Tirages
	C.A.P. MÉTIERS DES SEC	CTEURS		
SUJET	1 11000003400 41	âtiment létiers de la santé et de l'hygiène		
Épre	uve : Mathématiques et Sciences	Durée : 2 heures	Coef.: 2	page 4/9

PARTIE SCIENCES (10 points)

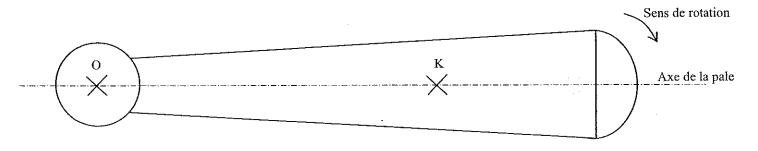

EXERCICE 4 (3 points)

Le vent exerce une force \vec{V} sur la pale de l'éolienne et fait tourner le rotor.

4.1. La pale effectue 90 tours en 75 secondes.

Calculer, en tr/s, la fréquence moyenne de rotation de la pale.

4.2. La pale a été testée en soufflerie. Le graphique suivant a été obtenu.


Déterminer graphiquement la valeur de la force \vec{V} obtenue pour un vent de vitesse 14 m/s. Laisser apparents les traits utiles à la lecture.

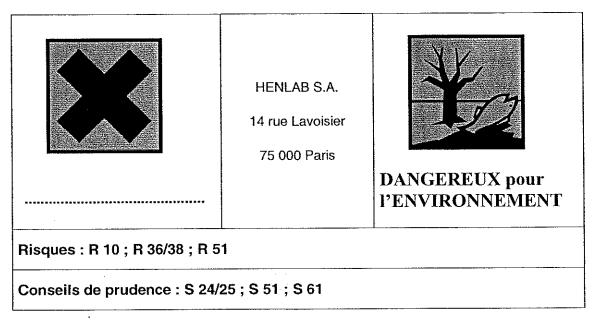
	Groupement des Académies de l'Est	Session 2005	Code examen:	Tirages
	C.A.P. MÉTIERS DES SEC	CTEURS		
SUJET		âtiment étiers de la santé et de l'hygiène		
Épre	uve : Mathématiques et Sciences	Durée : 2 heures	Coef.: 2	page 5/9

4.3. Une force \vec{F} , appliquée au point K, est perpendiculaire à l'axe de la pale. Cette force fait tourner la pale dans le sens de rotation indiqué.

Force	Point d'application	Droite d'action	Sens	Valeur (en N)
$ec{F}$	K	verticale	du haut vers le bas	6,4

Représenter sur le schéma ci-dessous la force \vec{F} . L'axe de la pale est considéré en position horizontale. Prendre 1 cm pour 2 N.

EXERCICE 5 (3 points)


Les pales sont fabriquées en fibre de verre recouverte de résine « époxy » dont un des composants a pour formule brute $C_8H_{12}O_2$.

5.1. Compléter le tableau des éléments composant la molécule de formule $C_8H_{12}O_2$.

Elément	Nom de l'élément	Nombre d'atomes présents dans la molécule
C		
Н		-
О		

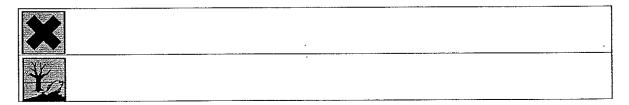
	Groupement des Académies de l'Est	Session 2005	Code examen:	Tirages
	C.A.P. MÉTIERS DES SEC	CTEURS		
SUJET		âtiment létiers de la santé et de l'hygiène		
Épre	uve : Mathématiques et Sciences	Durée : 2 heures	Coef.: 2	page 6/9

5.2. Sur un pot de résine « époxy », figurent les indications suivantes :

- 5.2.1. Indiquer sous le premier pictogramme sa signification.
- 5.2.2. Donner, dans le tableau suivant, pour chaque pictogramme, une consigne de précaution.

On rappelle que:

R10: Inflammable.


R36/38: Irritant pour les yeux et la peau.

R51: Toxique pour les organismes aquatiques.

S 24/25: Eviter le contact avec la peau et les yeux.

S 51: Utiliser seulement dans des zones très ventilées.

S 61 : Eviter le rejet dans l'environnement. Consulter la fiche de données de sécurité.

Groupement des Académies de l'Est Session 2005		Code examen:	Tirages	
SUJET	C.A.P. MÉTIERS DES SECTEURS			
Épreuve : Mathématiques et Sciences Durée : 2 heures		Coef. : 2	page 7/9	

EXERCICE 6 (4 points)

L'éolienne alimente une résistance chauffante.

Au laboratoire de sciences physiques, on réalise le montage ci-dessous pour déterminer la valeur de la résistance chauffante.

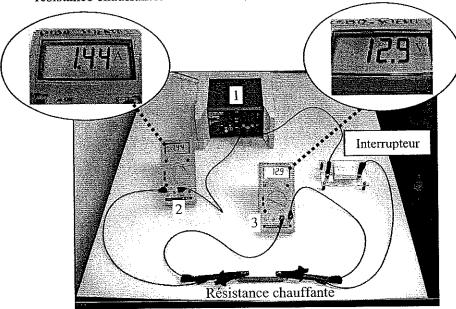


Schéma électrique

Photo 1

6.1. Indiquer le nom de l'appareil qui permet de mesurei.
6.1.1. la tension aux bornes de la résistance chauffante ;
6.1.2. l'intensité du courant dans le circuit.
6.2. Identifier les éléments 1, 2 et 3 apparaissant sur la photo 1.
1:
2:
3:

6.3. Dessiner le schéma électrique du montage dans le cadre situé à côté de la photo 1.

Groupement des Académies de l'Est Session 2005		Code examen :	Tirages	
SUJET	C.A.P. MÉTIERS DES SECTEURS			
Épreuve : Mathématiques et Sciences Durée : 2 heures		Coef.: 2	page 8/9	

- 6.4. Le générateur délivre une tension continue de 13 V. Afin de mesurer la tension aux bornes de la résistance chauffante, indiquer sur la photo 2 :
 - 6.4.1. les bornes du multimètre sur lesquelles doivent être placés les fils ;
 - 6.4.2. la position du sélecteur de calibre.

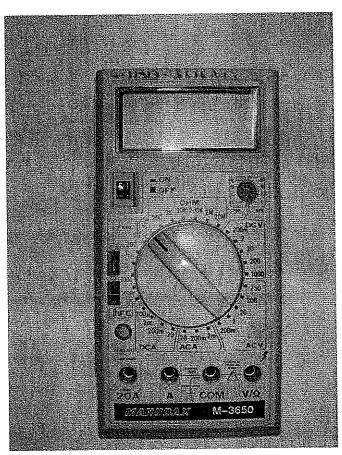


Photo 2

6.5. Lire sur la photo 1 les val- les cadres ci-dessous.	eurs de la tensio	n électrique et d	e l'intensité du co	urant. Reporter ces va	leurs dans
les caules ci-dessous.					
	U =		I =		
			Ł		

6.6. Calculer, en ohm, la valeur de la résistance chauffante. Arrondir le résultat à l'unité.

On rappelle la loi d'Ohm U = R I.

Groupement des Académies de l'Est		Session 2005	Code examen:	Tirages
	C.A.P. MÉTIERS DES SECTEURS			
SUJET	1 11000011que et mente-en-	- Bâtiment - Métiers de la santé et de l'hygiène		
Épreuve : Mathématiques et Sciences		Durée : 2 heures	Coef.: 2	page 9/9

Puissances d'un nombre

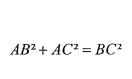
$$10^{0} = 1; 10^{1} = 10; 10^{2} = 100; 10^{3} = 1000$$
$$10^{-1} = 0,1; 10^{-2} = 0,01; 10^{-3} = 0,001$$
$$a^{2} = a \times a; a^{3} = a \times a \times a$$

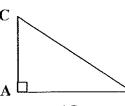
Nombres en écriture fractionnaire

$$c\frac{a}{b} = \frac{ca}{b} \text{ avec } b \neq 0$$

$$\frac{ca}{cb} = \frac{a}{b}$$
 avec $b \neq 0$ et $c \neq 0$

Proportionnalité

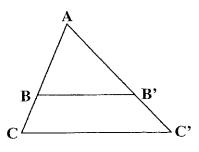

a et b sont proportionnels à c et d


(avec
$$c \neq 0$$
 et $d \neq 0$)

équivaut à
$$\frac{a}{c} = \frac{b}{d}$$

équivaut à ad = bc

Relations dans le triangle rectangle



$$\sin \hat{B} = \frac{AC}{BC}$$
; $\cos \hat{B} = \frac{AB}{BC}$; $\tan \hat{B} = \frac{AC}{AB}$

Propriété de Thalès relative au triangle

si
$$(BB')//(CC')$$

alors
$$\frac{AB}{AC} = \frac{AB'}{AC'} = \frac{BB'}{CC'}$$

Périmètres

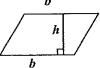
Cercle de rayon R:

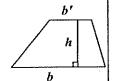
 $p=2\pi R$

Rectangle de longueur L et largeur l:

p = 2(L+1)

<u>Aires</u>


 $A = \frac{1}{2}bh$ Triangle


Rectangle

A = Ll

Parallélogramme A = bh

Trapèze $A = \frac{1}{2}(b+b')h$

Disque de rayon R $A = \pi R^2$

Volumes

Cube de côté a :

 $V = a^3$

Pavé droit (ou parallélépipède rectangle)

de dimensions l, p, h: V = lph

Cylindre de révolution où A est l'aire de la base et h la hauteur: V = Ah

Statistiques.

Moyenne : \bar{x}

$$\overline{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{n_1 + n_2 + \dots + n_p}$$

Fréquence : f

$$f_1 = \frac{n_1}{N}$$
; $f_2 = \frac{n_2}{N}$; ...; $f_p = \frac{n_p}{N}$

Effectif total: N

Calculs d'intérêts simples

Intérêt : I Capital: C

Taux périodique: t Nombre de périodes : n

Valeur acquise en fin de placement : A

$$I = Ctn$$

$$A = C + I$$