CORRIGE

Ces éléments de correction n'ont qu'une valeur indicative. Ils ne peuvent en aucun cas engager la responsabilité des autorités académiques, chaque jury est souverain.

CORRECTION DU

SUJET 2006

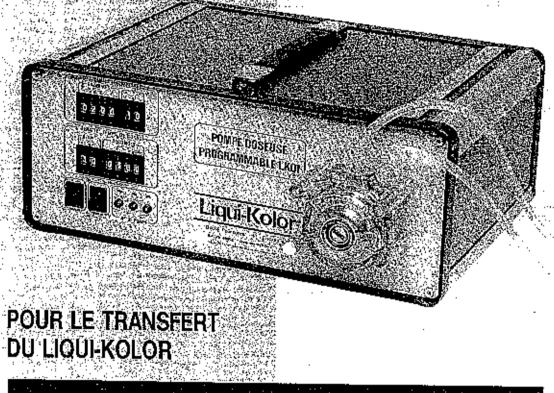
POMPE DOSEUSE

POUR

COLORATION LIQUIDE

EXAMEN : B.E.P. Mise en Œuvre des Matériaux ~ Plastiques composites						
Epreuve : Techno	ologie		<u> </u>	<u></u>	·	
Session : 2006	Repère: EP3	Echelle :	Durée : 3h00	Coef: 4	Page : 1/ 16	
Ĺ	Groupement I	=\$T		Correction de la	partie écrite	

SOMMAIRE:


Page 1	Titre du sujet de technologie 2006
Page 2	Sommaire
Page 3	Présentation de la pompe doseuse
Page 4	Schéma descriptif des différents éléments étudiés
Page 5	Questionnaire concernant les matières plastiques mises en œuvre
Page 7	Le moule d'injection
Page 9	Technique de mise en œuvre : Injection
Page 11	Technique de mise en œuvre : Extrusion tube
Page 12	Technique de mise en œuvre : Extrusion gainage
Page 13	Technique de mise en œuvre : Extrusion gouflage
Päge 14	Technique de mise en œuvre : Thermoformage /// Coloration /// Pneumatique
Page 15	Document fournisseur d'éléments standards pour moule (document RABOURDIN)
Page 16	Document technique fiche matière du PC

EXAMEN : B.E.P. Mise en Œuvre des Matériaux – Plastiques composites							
Epreuve : Technologie	:	·		,	· .:		
Session: 2006 R	epère: EP3	Echelle :	Durée : 3h00	Coef: 4	Page : 2/ 16		
Groupement EST			Co	srection de la	partie écrite		

Pompe doseuse peristaltique Plus de tâtonnements, ni de calcul pour règler votre pompe doseuse.

VOUS AFFICHEZ DIRECTEMENT:

- le poids de la grappe ;
- le pourcentage de coforant nécessaire ;
- la densité du colorant ;
- le temps de dosage de la vis.
 A chaque lancement de cycle,
 la pumpe doseuse LK 01 distribue
 la quantité exacte de colorant désiré.

DISPERSIONS POUR PLASTIQUES

Liqui-Kolor[®]

EXAMEN : B.E.P.	. Mise en Œuvre de	s Matériaux – P	lastiques composite:	 S	
Epreuve : Techno	logie				
Session : 2006	Repère: EP3	Echelle:	Durée : 3h00	Coef: 4	Page : 3/ 16
Groupement EST				Correction de la	partie écrite

AVERTISSEMENT: PRENEZ CONNAISSANCE DE LA TOTALITE DU DOSSIER AVANT DE COMMENCER A REPONDRE AUX DIFFERENTES QUESTIONS

La pompe doseuse pour coloration liquide:

Mise en situation: La pompe doseuse permet d'alimenter directement le fourreau de la presse en colorant liquide. Le strict volume de colorant nécessaire par moulée est transféré lors de chaque dosage. Cette alimentation est précise et régulière.

La pompe est toujours livrée posée sur son bac support thennoformé et protégée à l'aide d'un film de protection repère 5 en PE bd et non représenté sur le schéma ci-dessous.

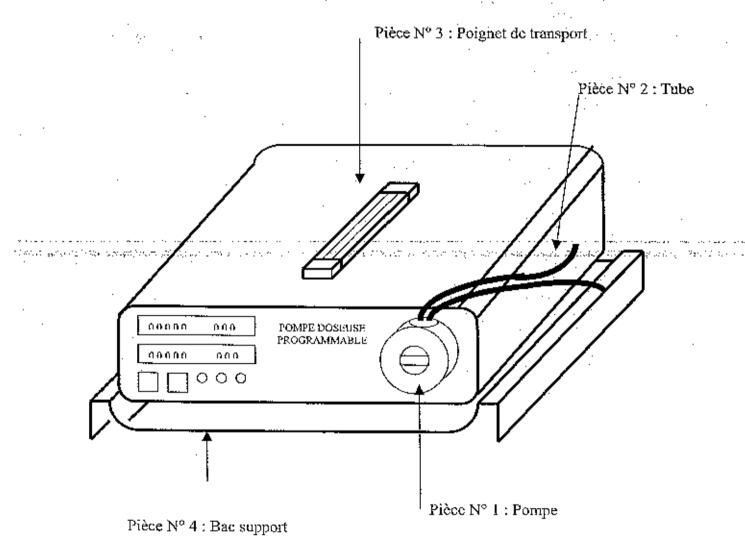


Schéma simplifié de la pompe doscuse

EXAMEN : B.E.P. Mise en Œuvre des Matériaux – Plastiques composites						
Epreuve : Technologie						
Session: 2006	Repere: EP3	Echelle :		Durée : 3h00	Coef: 4	Page : 4/ 16
Groupement EST				Correction de la	partie écrite	

CHAPITRE 1: LES MATIERES PLASTIQUES MISES EN OEUVRE

/ 2 Question 1 : Complétez le tableau suivant en prenant la première ligne comme exemple :

Repère de l'article	Nom de l'article	Abréviation normalisée de la matière plastique	Nom chimique de la matière plastique
i	Pompe	PC	Polycarbonate
. 2	Тиуги	Si	Silicone
. 3	Poignet de transport	PVC	Polychlorure de vinyle
4	Bac support	PS-SB	Polystyrène choc Ou styrène butadiène
5 .	Film dc protection	PE bd	Polyéthylène basse densité

/ 4 Question 2 : Le silicone utilisé pour la réalisation des tuyaux fait partie des matières T.D. Citez 2 caractéristiques des T.D. :

Ils ne sont pas recyclables.

Le passage de l'état liquide à l'état solide est irréversible.

La structure moléculaire est tridimensionnelle.

/ 2 Question 3 : Le bac support thermoformé repère 4 est en SB. Quelle caractéristique mécanique est améliorée par l'apport de butadiène dans le PS ?

e la galat dan Menjalah jalah laga dan kecamatan di Siger Alwaysiya da kater 1855.

La résistance aux chocs

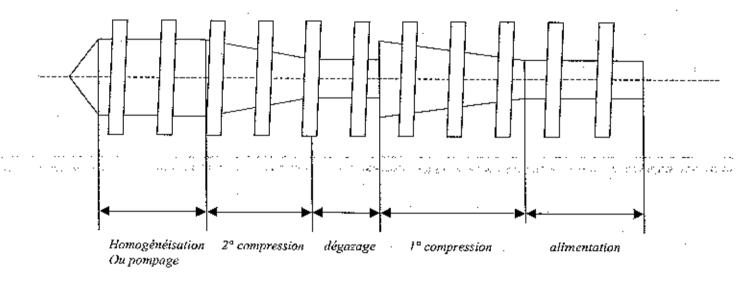
/ 2 Question 4 : Les fabricants du Polycarbonate utilisé pour la pompe repère 1 recommande de séchet cette matière avant sa mise en œuvre. Citez un défaut que cela permet d'éviter ?

> Le défaut nommé « givrage » L'apparition de bulles

/ 2 Question 5 : Nommez un appareil permettant de réaliser ce séchage .

Une étuve ou un dessicateur ou une trémie chauffante.

EXAMEN : B.E.P. Mise en Œuvre des Matériaux - Plastiques composites						
Epréuve : Technologie						
Session : 2006	Repère: EP3	Echelle:	Durée : 3h00	Coef:4	Page : 5/ 16	
Groupement EST			_:	Correction de la	partie écrite	


/ 2 Question 6 : Relevez sur la fiche matière page 18 les deux paramètres de réglage utiles pour effectuer cette opération.

> Température d'étuvagé : 120 °C Temps d'étuvage : 4 heures

/ 2 Question 7 : L'extrusion des poignets de transport repère 3 en PVC nécessite diverses précautions lors de sa mise en œuvre, entre autre, une vis à la forme caractéristique (représentée à la question 8) est utilisée. Donnez son nom.

Une vis à dégazage

/ 2 Question 8 : Nommez les différentes zones de la vis sur le schéma ci-dessous :

EXAMEN : B.E.P. Mise en Œuvre des Matériaux – Plas	tiques composites
Epreuve : Technologie	
Session : 2006 Repère: EP3 Echelle :	Durée : 3h00 Coef : 4 Page : 6/16
Groupement EST	Correction de la partie écrite

CHAPITRE 2: LE MOULE D'INJECTION

· Calculs pour déterminer la pression de verrouillage à afficher lors de la fabrication du corps de pompe.

/ 3 Question 9 : Déterminez la force d'ouverture du moule en tenant compte des caractéristiques de la matière, du moule et de la pièce.

Rappel : Force d'ouverture = pression dans l'empreinte X surface projetée de la moulée.

KN (1 KN = 100 daN) bars cm^2

Caractéristiques pièces * La surface de chaque pièce est de 35 cm² * La surface des canaux d'alimentation sera	Caractéristiques moule * Moule à 4 empreintes * Les pertes de charges sont de 50 %	Caractéristiques matières * Les pressions de mise en œuvre sont indiquées sur le document matière page 18
négligée		

Surface projetée de la moulée = Surface projetée d'une pièce X nombre de pièces

= 35 X 4

 $= 140 cm^2$

Pression dans l'empreinte = pression d'injection - pertes de charges

·= 1800 · ··- 50 %

= 900 bar

Force d'ouverture = pression dans l'empreinte X surface projetée de la moulée.

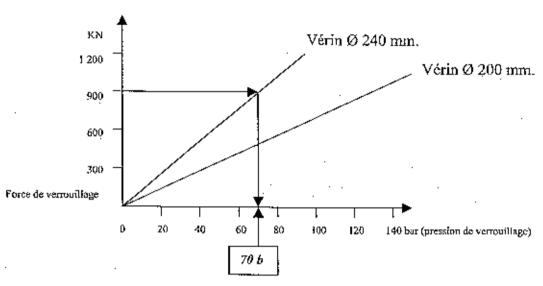
= 900 X = 126 000 daN ou 1 260 KN

/ 1 Question 10 : Déterminez la force de verrouillage du moule.

Rappel:

Force de verrouillage = force d'ouverture du moule + 10 % de la force d'ouverture du moule

= 126 000 + 12 600


= 138 600 daN ou 1 386 KN

EXAMEN : B.E.P. Mise en Œuvre des Matériaux - Plastiques composites						
Epreuve : Technologie						
Session : 2006	Repère: EP3	Echelle :	Durée : 3h00	Coef: 4	Page : 7/ 16	
Groupement EST				Correction de la	partie écrite	

/ 2 Question 11 : Pour répondre à cette question , vous ne tiendrez pas compte de la réponse précédente mais vous utiliserez une force de verrouillage de 900 KN.

Déterminez à l'aide de l'abaque ci-dessous la pression de verrouillage à afficher sur la presse afin de maintenir le moule fermé durant l'injection des pièces.

(le Ø du vérin de verrouillage est de 240 mm.)

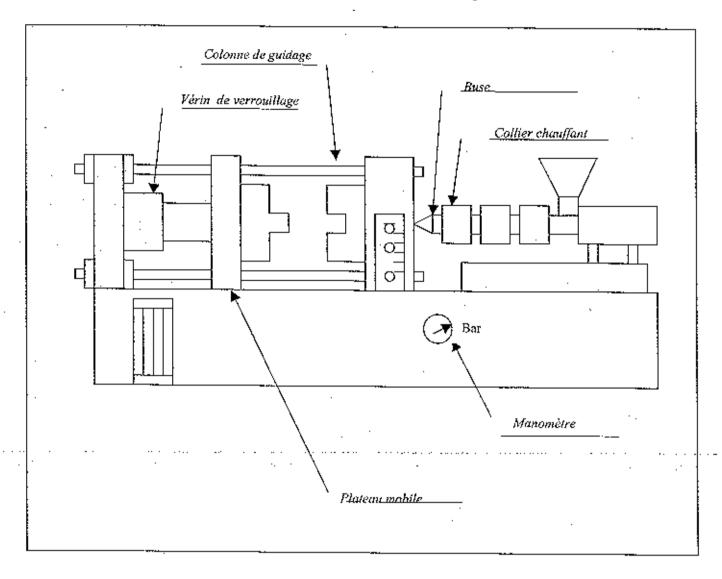
/ 2 Question 12 : La pièce ci-dessous représentée à l'échelle 1 :1 fait partie du moule des pompes (repère 1) Il vous est demandé d'en commander une autre.

En relevant les dimensions que vous jugerez utiles directement sur le dessin, allez rechercher la référence de cet élément de moule dans le document fournisseur page 16/16.

Inspirez vous de l'exemple figurant sous le dessin du document fournisseur page 16/16.

Nom de la pièce : Ejecteur (nîtruré chromé)

Référence de la commande : Réf. : 628 - 5 x 100



Echelle: 1:1

EXAMEN : B.E.P. Mise en Œuvre des Matériaux – Plastiques composites							
Epreuve : Techno	Epreuve : Technologie						
Session: 2006	Repère: EP3	Echelle :	Durée : 3h00	Coef: 4	Page : 8/ 16		
Groupement EST				Correction de la	partie écrite		

CHAPITRE 3:L'INJECTION DE LA POMPE REPERE 1

./ 3 Question 13 : Citez les différents éléments désignés de la presse représentée ci-dessous

/ 2 Question 14 : Lors de l'injection du corps de pompe en PC, des points noirs apparaissent sur les pièces.

Nommez une origine de ce défaut.

Pollution de la matière Surchauffe Temps de séjour

/ 2 Question 15 : Proposez une solution permettant d'éliminer ce défaut.

Purge de la matière et adaptation des températures Nettoyage de la trémie, de l'alimentation automatique en matière et du cylindre.

EXAMEN : B.E.P.					
Epreuve : Techno					
Session: 2006	Repère: EP3	Echelle :	Durée : 3h00	Coef: 4	Page : 9/ 16
Groupement EST Correction de la pa					partie écrite

- / 3 Question 16 : Complétez les phases manquantes du cycle d'injection :
 - 1 . <u>Fermeture du moule</u>
 - 2. Verrouillage du moule
 - 3. Approche du bloc de plastification
 - 4. Injection
 - 5 : Maintien en pression
 - 6. Refroidissement et dosage
 - 7. Recul du bloc de plastification
 - 8. Ouverture du moule
 - Ejection et retour des éjecteurs
 - 10. Pause puis relance du cycle
- / 2 Question 17 : Citez deux consignes spécifiques à une purge que doit respecter l'opérateur pour sa sécurité.

Travailler avec des gants spéciaux « haute température »

Mettre des lunettes de protection anti projection

Porter une tenue de travail type bleu de chauffe

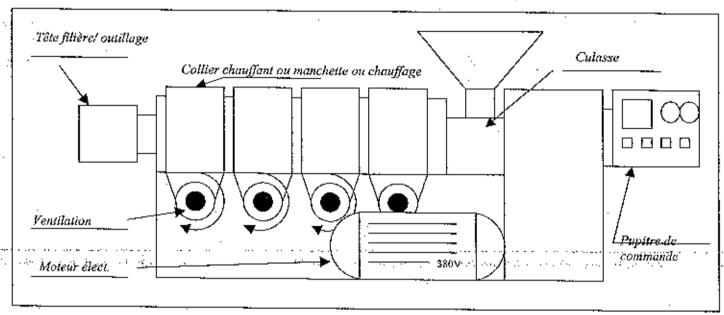
Ne pas placer le visage face à la huse

Respecter scrupuleusement la procédure de purge...

Utilisation d'un matériel adéquat à cette intervention

/ 3 Question 18 : Pour ces trois zones potentiellement dangereuses sur une presse d'injection, nommez un risque spécifique.

Zone de la presse	Risque de danger
Le cylindre	Brûlure
	Electrocution
Zone de fermeture	Ecrasement d'un membre
Environnement de l'outillage	Doigt coincé
Zone d'évacuation des pièces	Ecrasement de la main par chute de moulée Brûlure par moulée chaude


D'autres réponses peuvent être acceptées si directement en relation avec l'environnement de la presse

EXAMEN : B.E.P	EXAMEN : B.E.P. Mise en Œuvre des Matériaux - Plastiques composites									
Epreuve : Techno	logie	··								
Session : 2006	Repère: EP3	Echelle:	Durée : 3h00	Coef: 4	Page: 10/ 16					
	Groupement I	EST	Correction de la partie écrite							

CHAPITRE 4:L'EXTRUSION DU TUYAU REPERE 2

- / 4 Question 19 : Citez quatre procédés d'extrusion différents.
 - Extrusion gonflage
 - Extrusion soufflage
 - Extrusion profilés
 - Extrusion calandrage
 - Extrusion filière plate

/ 6 Question 20 : Nommez les différents éléments de l'extrudeuse qui vous est représentée ci-dessous :

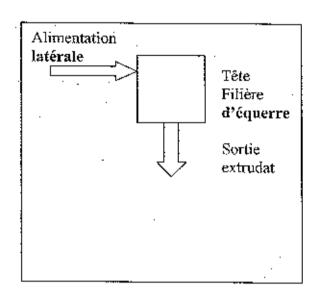
/ 2 Question 21 : Nommez deux calibreurs internes.

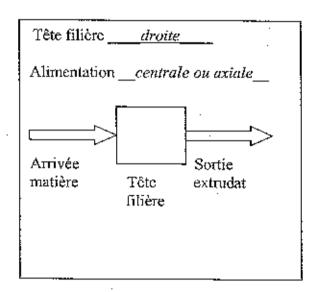
Calibreur à mandrin Calibreur à chaîne ou à bouchon

/ 4 Question 22 :Sur quels paramètres machines doit-on agir afin de faire varier l'épaisseur d'un tube ?

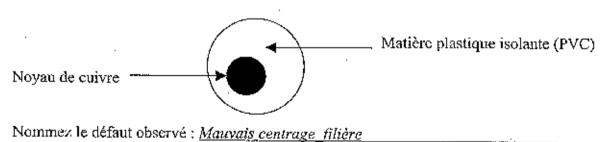
Vitesse de tirage Vitesse de rotation vis General ellement : Tompératus

(éventuellement :Température de la M.P.)

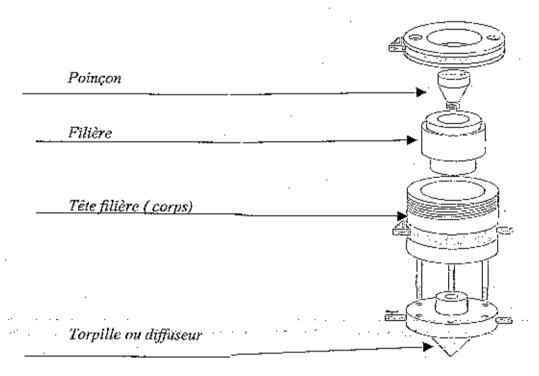

EXAMEN : B.E.P. Mise en Œuvre des Matériaux – Plastiques composites							
Epreuve : Technol	logie						
Session : 2006	Repère: EP3	Echelle :	Durée : 3h00	Coef: 4	Page: 11/ 16		
	Groupement E	ST		Correction de la	partie écrite		


CHAPITRE 5 :L'EXTRUSION GAINAGE ou CABLAGE

Cette technique permet la réalisation du câble d'alimentation de la pompe doseuse.


/ 2 Question 23 : On utilise avec ce procédé une tête filière en équerre avec alimentation latérale.

Nommez, en vous inspirant du schéma ci-dessous, les particularités de la seconde tête filière.


/ 1 Question 24 : Lors d'un contrôle sur le câble, l'opérateur constate le défaut suivant :

EXAMEN : B.E.P. Mise en Œuvre des Matériaux – Plastiques composites								
Epreuve : Techno	Epreuve : Technologie							
Session: 2006	Repère; EP3	Echelle :	Durée : 3h00	Coef: 4	Page : 12/ 16			
Ľ	Groupement E	ST		Correction de la	partie écrite			

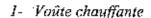
CHAPITRE 6 : L'EXTRUSION GONFLAGE DU FILM DE PROTECTION REPERE 5

- / 2 Question 25 : Citez deux procédés d'extrusion permettant de réaliser le film utilisé dans l'emballage des pots de colorant liquide utilisés avec la pompe doscuse.
 - Extrusion gonflage
 - Extrusion filière plate et calandrage
- / 2 Question 26 : Nommez les différents éléments constituant la tête filière annulaire qui vous est représentée :

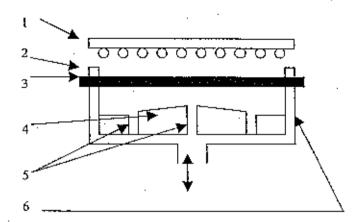
/ 1 Question 27 : A quel niveau sur le ballon réalisé en PE BD , se situe, la ligne de figeage ? (Vous pouvez vous aider d'un schéma)

A la sortie de la tête filière soit à la base du ballon elle représente la limite entre la M.P. solide au dessus de la M.P. liquide au dessous.

/ 2 Question 28 : Que se passe-t-il au niveau de cette ligne?


Cette ligne est à la transition entre une structure liquide et amorphe et une structure « solidifiée » et recristallisée .

Réponse suffisante : elle représente la limite entre la M.P. solide au dessus de la M.P. liquide au dessous.


EXAMEN : B.E.P. Mise on Œuvre des Matériaux – Plastiques composites								
Epreuve : Techno	ologie		<u></u>		<u></u>			
Session: 2006	Repère: EP3	Echelle :	Durée : 3h00	Coef: 4	Page: 13/ 16			
L	Groupement E	ST	7	Correction de la partie écrite				

CHAPITRE 7: THERMOFORMAGE DU BAC SUPPORT REPERE 4

/ 3 Question 29 : Nommez les différents éléments de la thermoformeuse qui vous est représentée.

- 2- Serre flan ou cadre de bridage
- 3- Flan ou plaque, feuille
- 4- Moule (positif)
- 5- Events (passage d'air)
- 6- Caisson

/ 2 Question 30 : Sous quelles formes sont livrées les semi-produits utilisés en thermoformage ?
 Donnez deux réponses.

- Feuille
- Bobine
- Plaque

CHAPITRE 8 : COLORATION LIQUIDE

/ 2 Question 31 : Quel est le principal avantage de ce type de technique de coloration des pièces en injection ?

Pas de nettoyage de la pompe, de la trémie, du système d'alimentation mais juste un changement de flexible.

Précision de la coloration.

Qualité de la diffusion des pigments

- / 2 Question 32 : La pompe doseuse utilise du colorant liquide. Citez deux autres formes habituelles de présentation des colorants.
 - Granulés MM
 - Poudre
 - Pâtes

CHAPITRE 9: PNEUMATIQUE

/ 2 Question 33 : Quelle est habituellement la pression d'air dans le réseau général d'un atelier ; pour l'utilisation d'une soufflette par exemple ?

5 à 7 bar.

/ 2 Question 34 : Expliquez le rôle d'un manomètre ,

Il permet de mesurer et d'indiquer une pression (d'air en pneumatique)

EXAMEN : B.E.P. Mise en Œuvre des Matériaux – Plastiques composites									
Epreuve : Techno	Epreuve : Technologie								
Session: 2006 Repère: EP3 Echelle: Durée: 3h00 Coef: 4 Page: 14/									
	Groupement I	ST		Correction de la	partie écrite				

EJECTEUR TETE CYLINDRIQUE NITRURE H ESC 6751, ISO 6751, DIN 1530 REF. 628 PH'NITRIDED EJECTOR PIN, CYLINDRICAL HEAD ESTRATTORE A TESTA CILINDRICA NITRURATO H EXTRACTOR COM CABEÇA CILINDRICA NITRURADO L'8 REG. 628 PH'NITRIDED EJECTOR PIN, CYLINDRICAL HEAD ESTRATTORE A TESTA CILINDRICA NITRURATO H EXTRACTOR COM CABEÇA CILINDRICA NITRURADO L'8 REG. 628

Exemple de commande : Réf 628 D=4 L>200 mm → 628-4x200 (Fabrications spéciales sur domande)

According dollar	2009	

. ** eprès apulsament du étack la colo C=6 deviendra 7 pour D=3.5 et 3.7 et la colo C=20 deviendra 18 pour D=12

y	خخب				_							el la cole	: C=20 dev	ilendra 18	pour D-		
_						Tarif p	ix unila	ire en B	RHT								
C.	. E	. 14		100	125	160	200	250	315	400	500	630	800	1000	1350		
•			1	4.08	-	4,24	· ·-	 				524		1000	100		
	Į.	1	7.1		4.08	4,24		 	!— —								
	ŀ	1	1.2	8,92	ì	4.08			 		 				ऻ		
9	2	0.2	1.3		3.92	4.08			· · · · · ·		-	<u> </u>		 -			
	ŀ	1	1.4		3.92	4.08		-		···-							
	· ·	!	1.5	. 3.45	1	3.92									\vdash		
	<u> </u>		1.6	_	3,82.0	4.08			 			 	· · · · ·	 -			
	l _	1	1.7	3.45	3.92		4.40								-		
35	2	0.2	1.8	L	3.92		. 4.77	1							\vdash		
		 	1,9		3.82		4:71		<u>-</u>				-		·		
	[0.2	2	1.88		2.36	2.5%	2.55	-	<u> </u>		- -		- - -	-		
	l _	1	2.1										· —	<u></u>	-		
4	2	0.3	2.2	2.36	į .	2.07	2.90	3.62	i		i —				<u> </u>		
		1	2.3			*						· —	-		-		
		<u>!</u>	2.4		ļ	100					T						
		•	2.5	2.36		. 2.87	2.99	3.45	<u> </u>			•			 		
-	١		2.6	13:4.		. 5,									_		
5	2 0.3	2	"	2 0.3	2.7	2.28	n i Biefrig		2.89	· ·	3.77			· —			_
			2.8					17.		i		!			\vdash		
		!	2.9		L	1.		¥.		· ·		!			_		
. <u>6</u>	L1	<u> </u>	3	1.65	noa-	2.36	2,54	2.99.	3.45	<u> </u>					 		
	. ع. د	_0.3	3:2	2.51	244		3.36		3.92			<u> </u>					
7**		i -	3.5	2.51	3-1,140	2.62	3,30	[J.92 ;	·	; -,,-		· · · ·		 		
		 	3.7	2.61	20000		9.30	<u> </u>	. 3.92					7	\vdash		
à	3	0.3	4	1.68		2.35	2.55	2.99	9,46	4.65					ı —		
٠	"	0.3	4.2	2.67			3.45		4.24	5.50			L		\vdash		
	_	 	4.5	2.67			3.46		4.24	5.50		,					
10] 3	0.3	- 5	.2.19		2:67 /	2.99	3.30	3.02	6.03	8.76	I			$\overline{}$		
٠.,	1 "	0.3	5.2	2.99			2.82	<u> </u>	4.71¢.	6.13		· · · · · ·					
	-	ł	5.5	2.90			3.62	<u> </u>	24.71.	6.13	<u> </u>		L	-			
12	5	0.5	6	2.38	No. of Street		3.46	4.08	4.68	≟5.81 <i>/</i>	6.91	10.82					
-	~ .	""	6.2	3.45			4.58		5.80	v: 6.76 : .	<u> </u>	1					
	_	 -	6.5 8	3.45			¥.55	<u>. </u>	5.50	9.78		<u> </u>					
14	5	0.5	8.2	3.92		3.30	2.92	4.40	5.34	6.76	7.85	13.39					
	-	} "."	8.5	3.02	76.5		6.03	 _	,5,44 /	8.17	10,21	<u> </u>					
	 	-	10	3:45		** * *** ***	6.03	-/	6.44	8.17	10:21		<u> </u>				
16	5	0.5	10.2	4.24	200,430	4.40	4.07	, 5,55, .	47.0%	./9_11	11.45	18.03					
	-		10.5	4.24	 		6.13	<u> </u>	- 8.32 ×	-40,40	13.0%	<u>!</u>	<u> </u>				
18"	7	0.8	12	4.40		6.663	6.13	4 644	6.32	10,40	t3.08		Į				
18	7	0.8	12.5	4.56	-	4,047.2	9.59	f.32	10,05	12.67		21.22		- 2	100		
70	—~		14	5,50	 	6.59.	3.32	40.75	10.74	13.39	15,68	4					
55	7	0.8	16	5.44	 -	8.48	10.21	10.21	17.95	14.63	17.72	25.98					
~~~	7	0.8	18	8.32	<del>                                     </del>	10.40		11.74	14.42	18.85	23.50	3 42	٠.,	Section 1			
26	8	1.0	20	9.26	<del>                                     </del>	.12.26	12:05	14.94	18.03	-23.59	28,22	39,24	70.66				
32	770	1,0	25	<del> </del> "-	<del></del>	. 12.26 /	23:59	18564	22.35	28.05	-\$6:6 <b>ā</b> :	48.72	:::	: .			
40	10	1 18	32	-	<del></del>	—	23:89	29.05	36,49	45.50	34,18	70,188		F 5. 1 4	100		

#### DOCUMENT RABOURDIN

EXAMEN: B.E.P	EXAMEN : B.E.P. Mise en Œuvre des Matériaux – Plastiques composites								
Epreuve : Techno	ologie		• • • • • • • • • • • • • • • • • • • •	····-	·				
Session: 2006	Repère; EP3	Echelle :	Durée : 3h00	Coef: 4	Page : 15/ 16				
L	Groupement E	EST		Correction de la	partie écrite				

#### FICHE MATIERE

#### POLYCARBONATE

P.C.

Matière de structure amorphe

Masse volumique:

 $1.20~\mathrm{gr/cm}^3$ 

Température du fourreau:

250° à 320° C

Pression d'injection:

Jusqu'à 1 800 bars. On fait souvent appel à la pression d'injection maxi car la

matière est très visqueuse.

Pression de maintien:

50 % de la pression d'injection

Contre pression:

Une contre pression faible de 50 à 100 bars sur la matière est suffisante.

Vitesse d'injection:

Il est recommandé d'adopter une vitesse d'injection élevée. Toutefois, pour éviter

le phénomène de jetting, on peut régler en vitesse lente jusqu'à l'entrée de la

matière dans l'empreinte.

Vitesse de rotation vis:

Assez lente pour éviter les surchauffes. Surtout avec les qualités auto-extinguibles.

าน กระบบสามารถ เราสามารถสามารถสุดกรุก และสาริสภาพาศ

Température du moule ;

80 ° à 120 ° C Un moule chaud apporte un bel état de surface et diminue les

contraintes internes.

Etuvage:

Un étuvage est nécessaire : 4 heures à 120° C dans une étuve ventilée.

Remarques:

Une buse libre est conscillée. Il faut aussi éviter tout équipement entrainant des

zones de stagnation de matière.

Arrêts machine :

De préférence vider le fourteau. Il est possible de laisser le PC dans le pot durant la nuit ou les week-end.. Pour ceci, il faut baisser et maintenir les chauffes à 160 – 180 °C. Ne pas baisser au-dessous de 160 °C car le PC adhère fortement aux

parties métalliques et risque d'entraîner des dépôts à la remise en route. Pour purger, on peut utiliser des déchets de PMMA, de préférence transparents.

EXAMEN : B.E.P. Mise en Œuvre des Matériaux - Plastiques composites									
Epreuve : Techno	logie		<del></del>						
Session : 2006	Repère: EP3	Echelle :	Durée : 3h00	Coef: 4	Page : 16/ 16				
1	Groupement !	EST		Correction de la	partie écrite				