BEP des métiers de l'Electrotechnique

Epreuve EP1

CONDITIONNEUR

DOSSIER RESSOURCES

SOMMAIRE

	Page	
Choix des disjoncteurs	DR 2	Documents Schneider
Détermination de la section d'un câble	DR 3-DR 4	Documents connected
Chute de tension dans une canalisation électrique	DR 4	
Calibre des protections en fonction de la section des conducteurs	DR 5	Norme NF C 15-100
Désignation des câbles		
Tube fluorescent	DR 6	Document CLAUDE
Alarmes techniques	DR 6-DR 7	
Notice du variateur ATV 18	DR 7-DR 8	Documents Schneider
Caractéristiques des moteurs asynchrones triphasés 230/400V, 1500 min ⁻¹ , 4 pôles	DR 9	Document LEROY SOMER
Disjoncteur magnétothermique GV2 ME et GV2 P	DR 9	Document Schneider
Contacteurs inverseurs modèle D pour commande de moteurs	DR 10	Documents Schneider
Détecteurs de proximité inductifs cylindriques série M30	DICTO	Doddinonio Cominata
Formulaire d'électrotechnique	DR 11	

METROPOLE - ANTILLES	Session de rer	nplacement 200	8 Code
BEP DES MÉTIERS DE L'ÉLEC	TROTECHNIQU	E	
EP1 COMMUNICATION TECHN	IQUE		
DOSSIER RESSOURCES	Durée : 4 heures	Coefficient : 4	Page DR 1/11

1) Disjoncteurs Compact C801 à CM3200.

disjoncteurs Compact		- 特別の (1997年) (199774) (199774) (199774) (199774) (199774) (199774) (C801 3.4	C1001	C1251 CN	CM1250 CN	CM1600 C	CM2000 C	CM2500 C	CM3200
caractéristiques électriques selon CEI 947-2 et EN 60947-2 courni assigné (A) tension assigné d'isolement (V) U tension assignée d'isolement (V) U tension assignée d'emploi (V) U U CA 50x60 Hz	EI 947-2 et EN 6 40 °C CA 50/60 Hz				1250(1) 1250 750 750 8 8 8 690 690	50 1600 0 750 1 8 8		2000 2500 750 750 8 8 8 690 690		3200 750 8 690
no	CA 50/60 Hz	220240 V 390415 V 440 V 500 V	N H L S	N H L 85 100 150 42 65 150 25 40 60	N H N 885 100 85 50 70 70 70 442 65 65 40 50 50 25 40 50	H 125 85 85 85 85 85 85 85 85 85 85 85 85 85	H. 125 85 85 85 85 85 85 85 85 85 85 85 85 85	H N 125 85 770 85 65 65 65 65 65 65 65 65 65 65 65 65 65	H 125 88 70 88 85 86 85	125 125 88 88 50 50 50
pouvoir de coupure de service los catégorie d'emploi aptitude au sectionnement endurance (cycles F-O)	CC (% lcu) mecanique electrique	250 V 250 V 500 V 750 V 750 V 440 V - In Z 440 V - In Z 690 V - In Z	* EG* 60% B A	% 50% 50% 000	B B	Ω	9	10000 22 2000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20000 22 20 20	E B B B B B B B B B B B B B B B B B B B	16000 10000 2000 2000
caractéristiques électriques selon Nema AB1 _{pouvoir} de coupure (kA)	lema AB1	690 V - In 240 V 480 V 600 V	85 100 150 42 65 100 30 42 65	85 100 150 42 65 100 30 42 65	85 100 85 42 65 65 30 42 50	125 85 50	125 85 50	125 85 50	85 125 8 65 85 6 50 50 5	85 125 65 86 50 50
protection (voir pages suivantes) protection contre les surintensités (A) déclencheur électionique intégré STCM 1/2/3 protection différentielle	déclencheur interchangeable courant de réglage dispositif additionnel Vigi rélais Vigirex + tore + MX	ngaathe Vgi MX	320800	4001000	5001250		(2)			(3)
installation et raccordement fixe prisas avant fixe prisas arrière débrochable sur socie débrochable sur chássis										
auxiliaires de signalisation et mesure contacts auxiliaires fonctions associées aux déclencheurs électroniques indicateur de présence de tension lindicateur de présence de cension bloc hancemeteur de courant bloc ameteur de courant de couran	 88									
bloc surperiore disolement auxiliaires de commande declencheurs auxiliaires telécommande commandes rotatives (directe, prolongée)	4° 1									
inverseur de source manuel/automatique accessoires d'installation et de raccordement bornes plages et épanouisseurs cache bornes et separateurs de phases cache de face avant	cordement									
accessolres de raccordement verrouilinge par cadenas ou serrure dimensions et masses dimensions L x H x P (mm) masse (kg)	3 poles FPAV 4 poles FPAV 3 poles FPAV 4 poles FPAV		210 x 374 x 172 290 x 374 x 172 13 25 17 33	210 x 374 x 172 280 x 374 x 172 113 x 34 x 172 25 17 33	210 x 374 x 172 280 x 374 x 172 13 17	430 x 418 x 451 430 x 573 x 451 41 41 56	130 x 418 x 451 130 x 573 x 451 11 56	430 x 418 x 451 430 x 573 x 451 46 61	540 x 420 x 451 540 x 573 x 451 48 63	550 x 418 x 451

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session de remplacement 2008
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page DR 2 / 11

2) Détermination de la section d'un câble.

Les tableaux figurant ci-dessous et ci-contre permettent de déterminer la section des conducteurs de phase d'un circuit.

Ils ne sont utilisables que pour des canalisations non enterrées et protégées par disionateur.

Pour obtenir la section des conducteurs de phase, il faut :

 déterminer une lettre de sélection qui dépend du conducteur utilisé et de son mode de pose

 déterminer un coefficient K qui caractérise l'influence des différentes conditions d'installation.

Ce coefficient K s'obtient en multipliant les trois facteurs de correction, K1, K2 et k3.

p le facteur de correction K1 prend en compte le mode de pose

 D le facteur de correction K2 prend en compte l'influence mutuelle des circuits placés côte à côte

ie facteur de correction K3 prend en compte la température ambiante et la nature de l'isolant.

Lettre de sélection

type d'éléments conducteurs conducteurs et câbles multiconducteurs	mode de pose ■ sous conduit, profilé ou goulotte, en apparent ou encastré ■ sous vide de construction, faux plafond ■ sous caniveau, moulures, plinthes, chambranles	lettre de sélection B
	■ en apparent contre mur ou plafond ■ sur chemin de câbles ou tablettes non perforées	С
câbles multiconducteurs	■ sur échelles, corbeaux, chemin de câbles perforé ■ fixés en apparent, espacés de la paroi ■ câbles suspendus	E
câbles monoconducteurs	sur échelles, corbeaux, chemin de câbles perforé fixés en apparent, espacés de la paroi câbles suspendus	F

Facteur de correction K1

lettre de sélection B	cas d'installation ■ câbles dans des produits encastrés directement dans des matériaux thermiquement isolants	K1 0,70
	■ conduits encastrés dans des matériaux thermiquement isolants	0,77
	■ câbles multiconducteurs	0,90
	■ vides de construction et caniveaux	0,95
C	■ pose sous plafond	0,95
B, C, E, F	■ autres cas	1

Facteur de correction K2

lettre de	Laisposition ass		facteur de correction K2 nombre de circuits ou de câbles multiconducteurs											
sélection	câbles jointifs	nomi	bre de	circu	uits o	u de c	âbles	multi	cond	ucteu	rs			
		1	2	3	4	5	6	7	8	9	12	16	20	
в, с	encastrés ou noyés dans les parois			1 1									20 0,38	Avec :
С	simple couche sur les murs ou les planchers ou tablettes non perforées						0,72							*K = K1 x K2 x K3 -*Iz : courant
	simple couche au plafond	0,95	0.81	0.72	0.68	0,66	0.64	0,63	0,62	0,61	0,61		<u> </u>	admissible
E, F	simple couche sur des tablettes horizontales perforées ou sur tablettes verticales	1,00	0,88	0,82	0,77	0,75	0,73	0,73	0,72	0,72	0,72			dans le câble *I'z : courant fictif
	simple couche sur des échelles à câbles, corbeaux, etc.	1,00	0,87	0,82	0,80	0,80	0,79	0,79	0,78	0,78	0,78			tenant compte du facteur K

Lorsque les câbles sont disposés en plusieurs couches, appliquer en plus un facteur de correction de :

- 0,80 pour deux couches
- 0,73 pour trois couches
- 0,70 pour quatre ou cinq couches.

 $I'z = \frac{Iz}{K}$

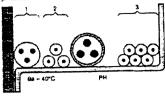
Facteur de correction K3

températures	isolation		
ambiantes (°C)	élastomère (caoutchouc)	polychlorure de vinyle (PVC)	polyéthylène réticulé (PR) butyle, éthylène, propylène (EPR)
. ,	1.29	1,22	1,15
10 15	1.22	1,17	1,12
20	1.15	1.12	1,08
25	1,07	1,07	1,04
20 25 30	1.00	1.00	1,00
35	0.93	0.93	0,96
40	0.82	0.87	0,91
40 45	0,71	0.79	0,87
45	0,58	0,71	0,82
50 55	0,38	0,61	0.76
60		0,50	0,71

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session de remplacement 2008
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page DR 3 / 11

détermination de la section minimale

Connaissant l'z et K. (l'z est le courant equivalent au courant véhiculé par la canalisation . ("z = iz/K), le tableau suivant


		isolan	t et nor	nbre de	conduct	eurs ch	arges (ou 2)		
			chouc		butyle	ou PR :	ou éthyl	ène PR		
ettre de	В		PVC2		PR3		PR2			
sélection	Č	1	PVC3		PVC2	PR3		PR2		
BANCOLON	E	1		PVC3		PVC2	PR3		PR2	
	F	1			PVC3		PVC2	PR3		Pf12
section	1.5	15.5	17,5	18,5	19,5	22	23	24	26	
cuivre	2.5	21	24	25	27	30	31	33	36	
(mm²)	4	28	32	34	36	40	42	45	49	
juna j	6	36	41	43	48	51	54	58	63	1
	10	50	57	60	63	70	75	80	86	-
	16	68	75	80	85	94	100	107	115	
	25	89	96	101	112	119	127	138	149	161
	35	110	119	126	138	147	158	169	185	200
	50	134	144	153	158	179	192	207	225	242
	70	171	184	196	213	229	246	268	289	310
	95	207	223	238	258	27B	296	328	352	377
	120	239	259	276	299	322	346	382	410	437
	150	1233	299	319	344	371	395	441	473	504
	185		341	364	392	424	450	506	542	575
	240		403	430	461	500	538	599	641	679
	300		464	497	530	576	621	693	741	783
	400		404	1-31	1-335	656	754	825		940
	500			+	 	749	B68	946		1 08
	630		+	+	1	855	1 005	1 088		1 25
		16.5	18,5	19.5	21	23	25	26	28	
section	2.5	22	25	26	28	31	33	35	38	
aluminium	6	28	32	33	36	39	43	45	49	
(mm²)		39	44	45	49	54	59	62	67	-
	10	153	59	61	66	73	79	84	91	
,	25	70	73	78	83	90	98	101	108	121
	35	86	90	96	103	112	122	125	135	150
	50	104	1110	117	125	136	149	154	164	184
	70	133	140	150	160	174	192	198	211	237
	95	161	170	183	195	211	235	241	257	289
	120	186	197	212	226	245	273	280	300	33
	150	1100	227	245	261	283	316	324	346	389
	185	-	259	280	298	323	363	371	: 397	44
	240		305	330	352	382	430	439	470	530
	300		351	381	406	440	497	508	543	61
	400		- 331	1 301	+	526	600	663	1	74
	500	+-	<u> </u>		+	610	694	770	1	85
	630		+	<u></u>		711	808	899	- 	99

Exemple

Un câble PR triphasé est tiré sur un chemin de cábles pertoré, jointivement avec 3 autres circuits constitués :

- d'un câble triphasé (1" circuit)
- de 6 cables unipolaires (2º cricuri)
 de 6 cables unipolaires (3º cricuri) : ce
 circuit est constitué de 2 conducteurs par phase

Il y aura donc 5 groupements triphases. La température ambiante est de 40 °C. Le câble PR véhicule 23 ampères par phase.

La lettre de sélection donnée par le tableau correspondant est E.

Le facteur de correction K1, donné par le tableau correspondant, est 1. Le facteur de correction K2, donné par le Le facteur de correction K2, donne par le tableau correspondant, est 0,75. Le facteur de correction K3, donné par le tableau correspondant, est 0,91. Le coefficient K, qui est K1 x K2 x K3, est

donc 1 x 0,75 x 0,91 soit 0,68 Détermination de la section

On choisira une valeur normalisée de In

On choisira une valeur normanisee de l'ijuste supérieure à 23 A.
Le courant admissible dans la canalisation est 1z = 25 A.
L'intensité fictive 1'z prenant en compte le coefficient K est 1'z = 25/0.68 = 36.8 A.
En se plaçant sur la ligne correspondant à la lettre de réflection E. dans la colonne PR3. lettre de sélection E. dans la colonne PR3. on choisit la valeur immédiatement supérieure à 36,8 A. soit, ici, 42 A dans le cas du cuivre qui correspond à une section de 4 mm² cuivre ou, dans le cas de l'aluminium 43 Å, qui correspond à une section de 6 mm² aluminium.

3) Détermination de chute de tension dans une canalisation électrique.

Calcul de la chute de trension : ΔU = Ku x I x L

ΔU : chute de tension en mV

Ku : Coefficient de chute de tension donné dans le tableau ci-dessous (en mV/A/m)

I : Intensité du courant dans le câble (A)

L : longueur du câble (en m)

Section	Câble unip	oolaire			Câble bip	Câble bipolaire Câble tripolaire		
nominale	Ku				Ku		Ku	
	i Ku	Courant	alternatif		Courant a	lternatif	Courant a	Iternatif triphasé
	Mon	ophasé		phasé	monopha			0.0
	Cos = 1	Cos = 0,8	Cos = 1	Cos = 0,8	Cos = 1	Cos = 0,8	Cos = 1	Cos = 0,8
mm²	mV/A/m	mV/A/m	mV/A/m	mV/A/m	mV/A/m	mV/A/m	mV/A/m	mV/A/m
1,5	29,7	23.9	25,7	20,7	30,2	24,3	26,1	21,0
2,5	17,8	14,4	15,4	12,5	18,2	14,7	15,7	12,7
4	11,1	9,08	9,05	7,67	11,4	9,21	9,85	7,98
6	7,41	6,10	6.42	5,28	7,56	6,16	6,54	5,34
10	4,46	3.72	3,87	3,22	4,55	3,73	3,94	3,24
16	2,82	2,39	2,44	2,07	2,87	2,39	2,48	2,07
25	1,78	1,55	1,54	1,34	1,61	1,55	1,57	1,34
35	1,76	1,15	1,11	0,993	1,31	1,14	1,13	0,988
50	0,947	0,878	0,820	0.760	0,966	0,856	0,838	0,750
70	0,656	0,641	0,568	0,555	0.699	0,624	0,579	0,541
	0,473	0.494	0,401	0,426	0.484	0,476	0,419	0,412
95		0.413	0,325	0,358	0.383	0.384	0,332	0,342
120	0,375	0,356	0,265	0,308	0,314	0.341	0,272	0,295
150	0,306		0,203	0.265	0,251	0,289	0,217	0,250
185	0,246	0,306		0,244	0,193	0,245	0.167	0,212
240	0,169	0,259	0,163	0,244	0,155	0,215	0,135	0,186
300	0,152	0,229	0,132	10,130	10,100	10,2.0		

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session de remplacement 2008
EP1 COMMUNICATION TECHNIQUE	2 22 4/44
DOSSIER RESSOURCES	Page DR 4 / 11

4) Calibre des protections en fonction de la section des conducteurs.

Nature du circuit	Section minimale des conducteurs (mm²)	Courant assigné maxima du dispositif de protection (A)	
	Cuivre	Disjoncteur	Fusible
Eclairage, volets roulants, prises commandées	1,5	16	10
VMC	1,5	2 (1)	_ (3)
Circuit d'asservissement tarifaire, fil pilote, gestionnaire d'énergie, etc.	1,5	2	- (3)
Prises de courant 16 A :	1,5	16	_ (3)
- circuit avec 8 socles maxi :	2,5	20	16
Circuits spécialisés avec prise de courant 16 A (machine à laver, sèche-linge, four etc.)	2,5	20	16
Chauffe-eau électrique non instantané	2,5	20	16
Cuisinière, plaque de cuísson - en monophasé - en triphasé	6 2,5	32 20	32 16
Autres circuits y compris le tableau divisionnaire: (2)	1		
	1,5	16	10
	2,5	20	16
	4	25	20
	6	32	32

5) Désignation des câbles.

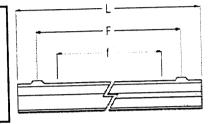
Séquence	Symboles	Signification	Séquence des symboles	Symboles	Signification
des symboles Type de la série	U	Normalisé	Bourrage (cas d'un câble à	G	Matière plastique ou élastique formant gaine de bourrage
Tension (en V)	250 500	Tension nominale	plusieurs conducteurs)	0	Aucun bourrage La gaine d'assemblage forme bourrage
·)	1000		Gaine de protection non	C N	Caoutchouc vulcanisé Polychloroprène
Âme Souplesse et	- A	Âme rigide en cuivre Aluminium	métallique	V	Polychlorure de vinyle
nature	S	Câbles souples		3	Avant le symbole = gaine épaisse Avant le symbole = gaine très épaisse
Enveloppe isolante	В	Caoutchouc butyle vulcanisé			·
130141110	С	Caoutchouc vulcanisé	Revêtement métallique	P	Plomb
	J	Papier imprégnié		F	Feuillard ou fil d'acier
	K	Caoutchouc silicone		Z	Zinc ou autre métal
	E	Polyéthylène	Gaine extérieure	V	Sur revêtement métallique = Polychlorure de vinyle
	N	Polychloroprène	Forme	-	Pas de symbole = forme ronde
	R	Polyéthylène réticulé		M	Câble méplat
	V	Polychlorure de vinyle	NxS	N	Nombre de conducteur
	X	Isilant minéral		x	G avec PE x sans PE
	2	Avant le symbole = gaine épaisse		S	Section des conducteurs
	3	Avant le symbole = gaine très épaisse			

MÉTIERO DE L'ÉLECTROTECHNIQUE	Session de remplacement 2008
BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page DR 5 / 11
DOSSIER RESSOCRACE	

⁽¹⁾ Sauf cas particuliers où cette valeur peut être augmentée jusqu'à 16 A, (2) Ces valeurs ne tiennent pas compte des chutes de tension (voir 526).

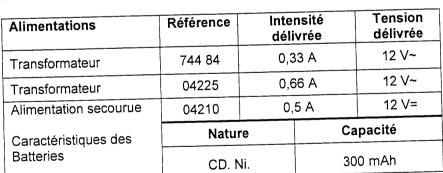
6) Tube fluorescent.

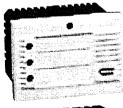
Classe	1
Degré de protection	IP 20*
Essai au fil incandescent	960°C
Energie de choc 0,225	J/IK 02
Rendement 2 x 58W	0,79E



PUISSANCE	REND	EMENT	ESPAC. MA	X. UNIF.: 0.8 Transversal
W	Total	Direct	Longitudinal	
1 x 36	0,81	0,81 E	1,65 hu	1,90 hu
1 x 58	0,81	0,81 E	1,65 hu	1,90 hu
2 x 36	0,80	0,80 E	1,65 hu	1,90 hu
2 x 58	0,79	0,79 E	1,65 hu	1,90 hu

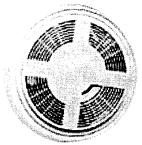
Dimensions en mm

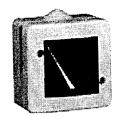



Données techniques

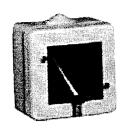
Désignation	Puissance (W)	Facteur de puissance	Tension de la lampe (V)	Puissance avec bailast (W)	Condensateur pour circuit duo 220-240V/50Hz (µF)	Tube Claudiux Ø26 flux lumineux (lm) 36/58W-G13
F 36W	36	0,82	103	46	4,5	36W = 3350 lm 58W = 5200 lm
F 58W	58	0.84	110	71	7,0	

7) Alarmes techniques.

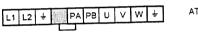






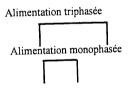

	Consommation en veille			nation en rme
Alimentation	12 V~	12 V=	12 V~	12 V=
Eléments annexes		><	><	\geq
Centrale 3 directions Réf. 74482	27 mA	11 mA	66 mA	36 mA
Tableau de synthèse Réf. 74483	27 mA	11 mA	66 mA	36 mA

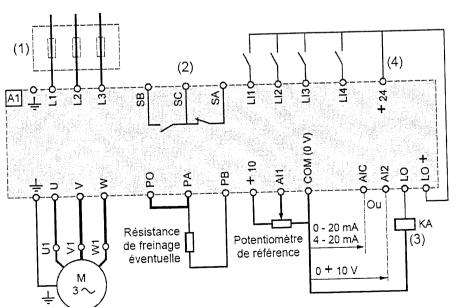
	Session de remplacement 2008
BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session de l'emplacement 2000
EP1 COMMUNICATION TECHNIQUE	
	Page DR 6 / 11
DOSSIER RESSOURCES	




			Conson	nmation
Alimentation en 12 V=	Référence		en veille	en alarme
Détecteurs			$\geq \leq$	$\geq \leq$
De fumée	40610		4,8 mA	20,3 mA
	Mosaic	Plexo 55	>>	
De gaz	74476	90381	170 mA	190 mA
D'inondation	74477	90382	0,2 mA	20 mA
D'élévation de température	74473	90383	0,2 mA	20 mA

8) Notice de l'ATV 18.


Schéma de raccordement



ATV-18 monophasés

Bornes	Fonction	Pour Altivar ATV-18
L1 L2	Alimentation	Tous calibres
L3	Puissance	Triphasės seuls
	Borne de masse de l'Altivar	Tous calibres
	Ne pas utiliser	Tous calibres
PA PB	Sortie vers la résistance de freinage	Tous calibres
V V W	Sorties vers le moteur	Tous calibres
	Borne de masse de l'Altivar	Tous calibres

TO DE LIÉI COTROTECUNIONE	Session de remplacement 2008
BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	
EP1 COMMUNICATION TECHNIQUE	DD 7/44
	Page DR 7 / 11
DOSSIER RESSOURCES	

Choix du variateur

Réseau	_		Moteur		Altivar 18 Courant	Courant	Puis-	Référence	Masse
rension d'alimen- ation	Courant de ligne (1) à U1 à U2		Puissance indiquée sur plaque		de sortie perma- ment	transi- toire maxi (2)	sance dissipée à la		
J1U2							charge nominale		
V	Α	A	kW	HP	Α	A	W		k
200240	4,4	3,9	0,37	0.5	2,1	3,1	23	ATV-18U09M2	1,
50/60 Hz monophasé	7,6	6,8	0.75	1	3,6	5,4	39	ATV-18U18M2	1,
	13.9	12.4	1,5	2	6,8	10,2	60	ATV-18U29M2	2,
	19.4	17.4	2.2	3	9,6	14,4	78	ATV-18U41M2	2,
200230	16.2	14,9	3	_	12,3	18,5	104	ATV-18U54M2	3,
50/60 Hz triphasé	20.4	18,8	4	5	16,4	24,6	141	ATV-18U72M2	3,
Hiphase	28.7	26.5	5.5	7,5	22	33	200	ATV-18U90M2	7,
	38.4	35,3	7.5	10	28	42	264	ATV-18D12M2	7
380460	2.9	2,7	0.75	1	2,1	3,2	24	ATV-18U18N4	
50/60 Hz triphasé	5.1	4,8	1,5	2	3,7	5,6	34	ATV-18U29N4	2
Hiphase	6,8	6.3	2,2	3	5,3	8	49	ATV-18U41N4	3
	9.8	8,4	3	_	7,1	10,7	69	ATV-18U54N4	3
	12.5	10,9	4	5	9,2	13,8	94	ATV-18U72N4	3
	16.9	15,3	5,5	7,5	11,8	17,7	135	ATV-18U90N4	
	21,5	19.4	7,5	10	16	24	175	ATV-18D12N4	
	31.8	28.7	11	15	22	33	261	ATV-18D16N4	
	42,9	38.6	15	20	29,3	44	342	ATV-18D23N4	

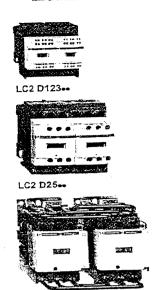
Affectation des bornes

Borne	Fonction	Caractéristiques			
SA SC SB	Contact OF du relais de sécurité. Enclenché pour variateur sous tension, sans défaut	Pouvoir de commutation des contacts : - mini 10 mA pour 5 V— - maxi sur charge inductive (cos φ 0,4, L/R 7 ms) 1,5 A pour 250 V— et 1,5 A pour 30 V—			
+10	Alimentation pour potentiomètre de consigne 1 à 10 $k\Omega$				
Al1	Consigne de vitesse en tension	Entrée analogique 0 + 10 V impédance 30 kΩ			
AI2	Consigne en tension ou Consigne en courant,	Entrée analogique 0 + 10 V impédance 30,55 kΩ ou entrée analogique 0 - 20 mA (préréglage usine)			
,	sommatrice de Al1	ou 4 - 20 mA, impédance 400 Ω Al2 ou AlC sont affectables. Ne pas les utiliser simultanément.			
СОМ	Commun pour entrées logiques et analogiques et sortie logique				
LI1 LI2	Commande du sens direct Commande du sens inverse	Entrées logiques impédance 3,5 kΩ Alimentation + 24 V (maxi 30 V) État 0 si < 5 V, état 1 si > 11 V			
LI3 } LI4 }	Vitesses présélectionnées	LI2, LI3, LI4 sont affectables			
+ 24	Alimentation des entrées et sorties logiques	+ 24 V protégé, débit maximal 100 mA			
LO+	Alimentation de la sortie logique	A raccorder au + 24 V interne ou au + 24 V (maxi 30 V) d'une alimentation externe			
LO	Référence vitesse atteinte	Sortie logique compatible API (collecteur ouvert) + 24 V maxi 20 mA avec source interne ou 200 mA avec source externe. LO est affectable.			

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session de remplacement 2008
EP1 COMMUNICATION TECHNIQUE	Page DR 8 / 11
DOSSIER RESSOURCES	

9) Caractéristiques des moteurs asynchrones triphasés 230 / 400V, 1500 min⁻¹, 4 pôles.

	Puissance nominale à 50 Hz	Vitesse nominale	Intensité nominale	*Facteur de puissance	Rendement	Courant démarrage / Courant nominal	Couple démarrage / Couple nominal	Couple maximal Couple nominal
Туре	P _N	N _N	I _N (400V) A	Cos φ	η	I _D /I _N	C _D / C _N	C _M /C _N
LS 56 L	0.09	1370	0.36	0.7	55	2.9	2	2.2
LS 63 E	0.12	1375	0.44	0.77	56	3	2.2	2.2
LS 63 E	0.18	1410	0.62	0.75	63	3.7	2.3	2.3
LS 71 L	0.25	1435	0.7	0.74	70	4.6	2.3	2.7
LS 71 L	0.37	1425	1.12	0.7	70	4,4	2.3	2.6
LS 71 L	0.55	1390	1.65	0.75	66	3.7	1.9	2.2
LS 80 L	0.55	1400	1.6	0.74	68	4.4	2.1	2.2
LS 80 L	0.75	1400	2	0.77	69	4.5	2.4	2.5
LS 80 L	0.9	1425	2.3	0.73	73	5.7	2.6	3.8
LS 90 S	1.1	1415	2.7	0.79	75	5.2	2.1	2.6
LS 90 L	1,5	1420	3.5	0.79	78	5.9	2.8	3
LS 90 L	1.8	1410	4.1	0.82	79	5.7	2.5	2.6
LS 100 L	2.2	1430	5.1	0.81	75	5.3	1.9	2.4
LS 100 L	3	1420	7.2	0.78	77	5.1	2.3	2.5
LS 112 M	4	1425	9,1	0.79	80	5.7	2.4	2.6
LS 132 S	5.5	1430	11.9	0.82	82	6.3	2.4	2.5
LS 132 M	7.5	1450	15.2	0.84	84	7.7	2.7	3.1
LS 132 M	9	1450	18.4	0.83	85	7.8	3	3.4
LS 160 M	11	1450	21.3	0.85	87.8	5.6	2.1	2.5
LS 160 L	15	1455	28.6	0.85	89.1	6.5	2.7	2.8

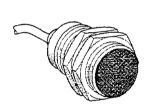

10) Disjoncteur magnétothermique GV2 ME et GV2 P.

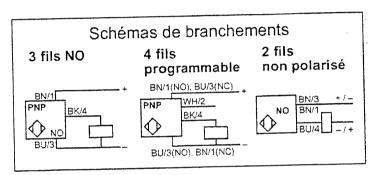
GV2 ME : commande par boutons poussoirs, GV2 P : commande par bouton

tournan	t			•						a see 15
puissano	es no	orm ali	sees	,				plage de	courant `	reference
des mote								réglage	de	
50/60 Hz		atégo	rie A	C-3				des	déclen-	그는 원명 시작하다 생활을 받아?
	crae /	-0.71			രവല			declencheur	s chement	
B 1	. 1	n	1	1=-	17	1001	CE	therminues	magnetic	rue bornes pornes
P ICU	102	1-15/	LA.	100	1-W	kΔ	(2)	(3)	ld ± 20 9	a vis (1) a nessort (5
KYY KA	141	PAR	N-1	1			377	A	Α	
		4.	1. 14	A P		*:		0,10,16	1.5	GV2 MED1 GV2 MED1
								2,,,,,,,,,		ou GV2 P01
								0,160.25	2.4	GV2 ME02 GV2 ME02
0.06 *	*							0,100,20	-, ,	OLIGV2 P02
								0.250.40	5	GV2 ME03 GV2 ME03
0.09 *	*							0.20,0.70	_	ou GV2 P03
					0.00	-	*	0.400.63	8	GV2 ME04 GV2 ME04
0,12 *	實				0.37	76	*	0,400.03	Ü	ou GV2 P04
								0,400.63	8	GV2 ME04
0.18 *	*							0,400.03	O	ou GV2 P04
								6.45 4	13	GV2 ME05 GV2 ME05
0.25 🛪	*				0,55	*	*	0,631	13	ou GV2 P05
								1,1.6	22.5	GV2 ME06 GV2 ME06
0.37 *	東	0,37	文	★				11.6	22.5	ou GV2 P06
								4 4 6	22,5	GV2 ME06
0.55 *	*	0,55	*	★	0.75	*	*	11.6	22.5	OU GV2 P06
									20.5	GV2 ME06
		0,75	*	*	1,1	*	*	1,1,€	22,5	OLI GV2 P06
									27.5	GV2 ME07 GV2 ME0
0.75 *	*	1.1	*	木	1,5	3	75	1.62.5	33.5	GV2 P07
0.75 *	*	1.1	*	*	1,5	8	100		33.5	GV2 ME08 GV2 ME0
1.1 *	*	1.5	×	×	2,2	3	75	2,54	51	
1.1 *	*	1.5	*	*	2,2	8	100		51	GV2 P08
1.5 *	*	2.2	*	*	3	3	75	2.54	51	GV2 ME08
1.5 *	*	2.2	*	*	3	8	100		51	GV2 P08 GV2 ME10 GV2 ME1
2.2 *	*	3	50	100		3	75	46.3	7 <u>&</u>	
2.2 *	*	3	**	*	4	6	100		78	GV2 P10 GV2 ME14 GV2 ME1
								0 4.0	490	ミヤン かにつみ いヤノ 投煙 し
3 * 3 *	*	4	10	100	5.5	3.	75 100	6,10 6,10	138 138	GV2 P14

BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Session de remplacement 2008
EP1 COMMUNICATION TECHNIQUE	2 22 0/11
DOSSIER RESSOURCES	Page DR 9 / 11

11) Contacteurs inverseurs modèle D pour commande de moteur.


LC2 D50-


des m 50/60		riphasé	ées is ie AC-3		0001		courant d'emploi en AC-3	aux	tacts iliaires antanès contacteur	contacteurs livrés avec bobines réference de base à complèter par le repère de la tension (1) fixation (2)	_
220 V			44014	500 V	660V 690 V	1000 V		, pu.	1	vis êtrier ressort tensions usuelles	
230V	400 V k₩	415 V	440 V ⋅ kW	kW	·kW	kW	jusqu'à	·,'	7	~ ≡ BC	
kW	KYV	KYY	N. T.	K**		,,,,,	A	- 1	1	(3)	
0.0		4	4	5.5	5,5		9	1	1	LC2 D09 (4) LC2 D093 (4) B7 P7 BD BL	
2.2	4		5.5	7.5	7,5		12	1	1	LC2 D12- (4) LC2 D123- (4) B7 P7 BD BL	
3	5.5	5.5		10	10		18	1	1	LG2 D18 (4) LC2 D183 (4) B7 P7 BD BL	-
4	7.5	9	9		15		25	1	1	LC2 D25 (4) LC2 D253 (4) B7 P7 BD BL	
5.5	11	11		15			32		1	LC2 D32++ (4) LC2 D323++ (4) B7 P7 BD BL	
7,5	15	15	15	18,5	18,5		38	 -	-i	LC2 D38→ (4) B7 P7 BD BL	-
9	18,5	18,5	18,5	18.5	18,5				 -	LC2 D40 (4) B7 P7 BD	_
11	18,5	22	22	22	_30	22	40			LC2 D50 ↔ (4) B7 P7 BD	-
15	22	25	30	30	33	30	50			LC2 D65 B7 P7 BD	_
18,5	30	37	37	37	37	37	65	_1_		ECZ DOJA	_
22	37	45	45	55	45	45	80	_1_		ECZ DOUS	-
25	45	45	45	55	45	45	95		1	ECZ Dasas	-
30	55	59	59	75	80	75	115	1	1	EC2 D11345	
40	75	80	80	90	100	90	150	1	11	LC2 D150⊶ B7 P7 BD	-
-10					1)Tension	ns du circ	uit de comma	nde p	oréférentielle:	s.	

(1)Tensions du circuit de commande préférentielles.

Courant atten	naur				400	440	500	
volts	24	48	115	230	400	******	300	
LC1 D09D1	50 (bohines D1	15 et D150	antiparasitées	P7		R7		
50/60 Hz	B7	E7	FE7	197	<u>V /</u>		· · · · · · · · · · · · · · · · · · ·	
LC1 D40D1	15			D5	V5	R5	S5	
50 Hz	<u>E5</u>	£5	FE5	<u> </u>		RE		
60 Hz	B6	E6						
Courant cent	inu						***	
units	12	24	36	48	72	110	220	
LC1 D09D3	8 (bobines anti	parasitées c	'origine)		SD	ED	MD	
U de 0.71.2	5 Uc JD	BO	CD	ED	لات			

12) Détecteurs de proximité inductifs cylindriques série M30.

					7.0
	10	20	15	10	10
portée nominale Sn à 20 °C (mm)	08	016	012	08	08
portée utile S (mm)	M	M	M	M	M
poitier M (métal) P (plastique)	-25 à +70	-25 à +70	-25 à +70	-25 à +70	-25 a +80
gamme de température (°C)		ecteur : selon conne	ctique	cáble : IP66	câble : IP68 /
degré de protection (selon IEC 529)	caule . IF 01 7 com	Catour . Colore College		connecteur : selon	connectique
	- \		'		
détecteurs pour applications sur circuit à courant continu (C	٠)	I	1		
raccordements par câble PVC (2 m) (2)	M30 x 40.5	M30 × 40,5	M30 x 40.5	M30 x 52	M30 x 50
dimensions (mm) D (diamètre) x L (longueur)	M3U X 40.5	1VI3U X 40,5	111001111111		
المراقع والمراقع والم	XS1 N30PA340	XS1 N30PA349	XS2 N30PA340	XS1 D30PA140 (1)	
références 3 fils PNP fermeture NO		AGENOUS ACTO		ter in the Armania	
4 fils PNP / NPN / NO / NC programmable				. John C	XS1 M30DA210
2 fils non polarisé NO			Addition Address		
raccordements par connecteur M12>- Snap-C* compatible	1420 50	M30 x 50	M30 x 50	M30 x 64	M30 x 60
dimensions (mm) D (diamètre) x L (longueur)	M30 x 50	100000			
programmer and the street of t	XS1 N30PA340D	XS1 N30PA349D	XS2 N30PA340D	XS1 D30PA140D (1)	
références 3 fils PNP fermeture NO		X3111301710.00	1: 41 KG (1)		- 35% <u>- 11864 - </u>
4 fils PNP / NPN / NO / NC programmable	708 1 - SV 120 305 - 1.554				XS1 M30DA210D
2 fils non polarisé NO	1917 Jacob	The Armer Section 1			
	1038	1038	1038	1030	1058
limites de tension d'alimentation mini/maxi (V)	10,,,30				1.5100
ondulation comprise	0200	0200	0200	0100	<u> </u>
courant commute mini/maxi (mA)	★/⊗	★/⊗	★/⊗	★ / ⊗	★ / ⑧
protection contre courts-circuits (★) signalisation de l'état de sortie DEL (②)					≤ 0.5
courant résiduel état ouvert (mA)					€ 4
tension de déchet état fermé (V) à l'nominal	≤2	₹ 2	≤ 2	≤ 3	200
terbiori de decriet état ferme (v) à momme.	14000	500	1 1000	200	1 £00
fréquence de commutation (Hz)	1000	1 200	1.500		1

	Session de remplacement 2008
BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	Ocasion de rempleses
EP1 COMMUNICATION TECHNIQUE	
DOSSIER RESSOURCES	Page DR 10 / 11
DOSSIER RESOCORGES	

FORMULAIRE BEP METIERS DE L'ELECTROTECHNIQUE Formules inscrites au référentiel Formules fournies aux candidats pendant l'épreuve EP1

Lois Générales en continu

Loi de Joule : Loi d'ohm :
$$W = R I^2 t \qquad U = R I$$

$$J \Omega A^2 s \qquad V \Omega A$$

Résistivité, résistance :

$$R = \rho \quad L / s$$

$$\Omega \mid \Omega . m \mid m \mid m^{2}$$

$$R_{\theta} = R_{0} (1 + a \; \theta)$$

$$\Omega \mid \Omega \mid \Omega \qquad ^{\circ}C$$

Association de résistances : groupement série

$$Req = R1 + R2 + R3$$

- groupement parallèle

1/Req = 1/R1+1/R2+1/R3

Association de condensateurs :
- groupement série

1/Ceq = 1/C1+1/C2+1/C3

- groupement paralléle

$$C_{eq} = C_1 + C_2 + C_3$$

| I oi des noeuds : | I oi des mailles : | $\Sigma I = 0$ | $\Sigma U = 0$

Générateurs :	Récepteurs :
U = E - r l	U = E + r l
V' V Ω' A	$V V \Omega A$

Lois Générales en alternatif

Fonction sinusoïdale :

 $u = \hat{U} \sin(\omega t + \phi)$

Dipôle purement

résistif:

$$Z = R$$
 $\Omega \mid \Omega$

Dipôle purement $Z = L \cdot \omega$ inductif : $\Omega \mid H \mid rad.s^{-1}$

) Dipôle purement	Z =	1/C	. ω
capacitif :	Ω	F	rad .s ⁻¹

Circuits monophasés:

$$S = U I P = U I \cos \varphi$$
 $VA V A W V A$

Circuits triphasés:

$$P = U I \sqrt{3} \cos \varphi$$

$$W V A$$

$$S = U \times I \times \sqrt{3}$$

$$VA \mid V \mid A$$

Relations, P, Q, S:

$$S = \sqrt{P^2 + Q^2}$$

$$VA \mid W \mid VAR$$

$$Q = P tang \phi$$

$$\sin \varphi = Q/S$$

Lois sur le magnétisme et l'électromagnétisme

Loi de Laplace :

$$F = B \mid L \sin \alpha$$

Loi de Lenz :

$$E = \Delta \phi / \Delta t$$

$$V \mid Wb \mid s$$

Lois sur les machines électromagnétiques

Rendement: $\eta = P_u / P_a$

Loi de mécanique :

$$P = T . Ω$$

$$W N.m. rad. s^{-1}$$

Moteurs asynchrones:

$$f = p \ n_s$$
 $g = (n_s - n) / n_s$
 $Hz \ tr.s^{-1}$ $tr.s^{-1}$

$$\Omega = 2\pi \times n$$

Couple: $T = k \quad \emptyset \quad I$ $N.m. \quad Wb \quad A$

Transformateur:

Rapport de m = Ns / Np transformation m = Uso / Up

THE REPORT OF THE POTTON OF TH	Session de remplacement 2008
BEP DES MÉTIERS DE L'ÉLECTROTECHNIQUE	COSCION CO TON PERSON
EP1 COMMUNICATION TECHNIQUE	Page DR 11 / 11
DOSSIER RESSOURCES	Page DR 11711