# Partie A : Redressement de facteur de puissance.

# On donne:

Une installation électrique monophasée 220V, 50 Hz.
Sa puissance active totale mesurée est Pa = 3 146W. Son courant consommé est 1 = 22A.

| Su puissance den le totale mesarce est 2 a ve ivisión contain consomme est 2 ===                                                                                | BEP | CAP       | ſ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|---|
| On demande de :                                                                                                                                                 |     |           |   |
| 1. Calculer sa puissance apparente:                                                                                                                             | /1  | /1        |   |
| S = U.I                                                                                                                                                         |     |           |   |
| $\mathbf{s} = 220 \times 22$                                                                                                                                    |     |           |   |
| S = 4 840 VA                                                                                                                                                    |     |           |   |
| 2. Calculer son facteur de puissance :                                                                                                                          | /2  | /2        |   |
| $\cos \varphi = P/S$                                                                                                                                            | /2  | <i>'~</i> |   |
| $\cos \varphi = 3  146/4  840$                                                                                                                                  |     |           |   |
| $\cos \varphi = 0.65$                                                                                                                                           |     |           |   |
| $\Im$ . Calculer sa puissance réactive : $Q = \sqrt{S^2 - P^2}$                                                                                                 | /1  | /1        |   |
| $\mathbf{Q} = \sqrt{4840^2 - 3146^2}$                                                                                                                           | ,   |           |   |
| Q = 3678  VAR                                                                                                                                                   |     |           |   |
| Calculer la valeur du condensateur C qu'il faudrait ajouter dans cette installation pour obtenir un facteur de puissance φ = 0.93 :     cosφ=0,93 ⇒ tgφ = 0,395 | /1  | XX        |   |
| $\mathbf{Q} \ \mathbf{final} = \mathbf{P} \mathbf{\times} \mathbf{tg} \boldsymbol{\varphi}$                                                                     |     |           |   |
| <b>Q final</b> = $3146 \times 0.395$                                                                                                                            |     |           |   |
| Q final = 1243 VAR                                                                                                                                              |     |           |   |
| Qc à fournir par le condensateur $C = Q - Q$ final                                                                                                              |     |           |   |
| Qc = 3678 - 1243                                                                                                                                                |     |           |   |
| Qc = 2 435 VAR                                                                                                                                                  |     |           |   |
| $C = Qc/U^2.2\pi f$                                                                                                                                             |     |           |   |
| $\mathbf{C} = 2  435/(220^2 \times 314)$                                                                                                                        |     |           |   |
| $C = 160 \mu F$                                                                                                                                                 |     |           |   |
|                                                                                                                                                                 |     |           |   |
|                                                                                                                                                                 | BEP | CAP       |   |

| ACADEMI    | IE DE CAEN | - | BEP et CAPELECTROTECHNIQUE                             | - | Session 1999 |
|------------|------------|---|--------------------------------------------------------|---|--------------|
| Sujet nº 6 | EP3        |   | Expérimentation SCIENTIFICEMIQUE Application Numérique |   | Feuille 1/2  |
|            |            |   | CORRIGE                                                |   |              |

## Partie B: Alimentation par batterie de 12V.

### On donne:

Un circuit électrique comprend 2 lampes de 12V, 12W et 2 lampes de 12V, 3W. Ces 4 lampes sont montées eu parallèle et alimentées par une batterie de 12V. La capacité de cette batterie est de 60 Ah. Sa force électromotrice, E = 12,1V. La tension mesurée à ses bornes pendant le fonctionnement est U = 12V.

|                                                                                        | BEP  | AP  |
|----------------------------------------------------------------------------------------|------|-----|
| On demande de :                                                                        |      |     |
| 1. Calculer la puissance totale de la charge :                                         |      |     |
| $P = 2 \times 12 + 2 \times 3$                                                         | /1   | /1  |
| P = 30W                                                                                |      |     |
| 2. <u>Calculer l'intensité débitée par la batterie :</u>                               | n    | /1  |
| P = U.I                                                                                |      |     |
| 1 = P/U = 30/12                                                                        |      |     |
| I = 2,5A                                                                               |      |     |
| 3. Calculer la durée de fonctionnement de la batterie si au départ elle est chargée au | ا بر | ,,, |
| <u>maximum :</u>                                                                       | /1   | /1  |
| $Q = I \times t$                                                                       |      |     |
| t = Q/I = 60/2,5                                                                       |      |     |
| t = 24h                                                                                |      |     |
| 4. Calculer la résistance interne de la batterie :                                     | /1   | /1  |
| U=E-r.1                                                                                |      | -   |
| r.I = E - U                                                                            |      |     |
| r = (E - U)/I                                                                          |      |     |
| r = (12, 1 - 12)/2, 5                                                                  |      |     |
| $r = 0.04\Omega$                                                                       |      |     |
| 5. Calculer le courant de court-circuit. Icc de la batterie :                          | /1   | ХX  |
| Icc = Eh                                                                               |      |     |
| Icc = 12,1/0,04                                                                        |      |     |
| Icc = 302,5A                                                                           |      |     |
|                                                                                        |      | _   |
| TOTAL                                                                                  | /10  | /8  |
|                                                                                        | SEP  | AP  |

| ACADEMI        | E DE CAEN | • | BEP et CAP ELECTROTECHNIQUE                                     | - | Session 1999 |
|----------------|-----------|---|-----------------------------------------------------------------|---|--------------|
| Sujet n° 6 EP3 |           |   | Expérimentation Scientifique et Technique Application Numérique |   | Feuille 2/2  |
| CORRIGE        |           |   |                                                                 |   |              |

#### Partie A: Enroulement de machine.

#### ' On donne:

La mesure à 15°C de la résistance de l'enroulement de cuivre d'une machine donne  $\mathbf{R}_{15} = 1.81\Omega$ . Après 2h de fonctionnement la résistance devient :  $\mathbf{R}_0 = 2,23\Omega$ .

On mesure au pied à coulisse le diamètre d'une extrémité du fil de l'enroulement, et on trouve :

0 = 475 mm. La résistivité du cuivre est  $\rho = 1.6 \times 10^{-8}$  Rm.

Son coefficient de température est  $\mathbf{a_0} = 4 \times 10^{-3} (\mathbf{C}^{\circ})^{-1}$ .

Rappel:  $R_{\theta} = R_{0}(1+a_{0},\theta)$ 

# AP 3EP On demande de : /2 1. Calculer la résistance de l'enroulement à 0°C : /2 $R_{\theta} = R_0(1 + a_0.\theta)$ $R_0 = R_\theta / (1 + a_0.\theta)$ $R_0 = R_{15}/(1+a_0.15)$ $R_0 = 1.81/(1+4\times10^{-3}\times15)$ $R_0 = 1.71\Omega$ 2. Calculer la température de l'enroulement au bout de 2h de fonctionnement, /2 /2 si $\mathbf{R}_0 = 1.71\Omega$ : $R_{\theta} = R_0(1+a_0.\theta)$ $2,23 = 1,71(1+4\times10^{-3}\times\theta)$ $2.23 = 1.71 + 1.71 \times 4 \times 10^{-3} \times \Theta$ $2.23 - 1.71 = 6.84 \times 10^{-3} \times \theta$ $\theta = 0.52/6.84 \times 10^{-3}$ $\theta = 76^{\circ}$ 3. Calculer la longueur du fil à la température de 15° qu'il faudrait commander pour refaire l'enroulement de la machine (arrondir au mètre près par excès) : II XX $R = \rho . I/S$ $\left.\begin{array}{l} 1 = R.S/\rho \\ S = \pi.\emptyset^2/4 \end{array}\right\}$ $\Rightarrow$ 1 = R. $\pi$ . $\varnothing^2/4$ . $\rho$ $1 = 1,81 \times \pi \times (0,75 \times 10^{-3})^2 / 4 \times 1,6 \times 10^{-8}$ l = 50 m

| ACADEM     | E DE CAEN | - BEP et CAP ELECTROTECHNIQUE                                   | - Session 1999 |
|------------|-----------|-----------------------------------------------------------------|----------------|
| Sujet nº 7 | EP3       | Expérimentation Scientifiqueet Technique  Application Numérique | Feuille 1/2    |
|            |           | CORRIGE                                                         |                |

# Partie B: Effet joule.

### On donne:

Un radiateur électrique est branché sur une tension de **220V**, 50 **Hz**. Il consomme **I** = 20A. Ce radiateur ne fonctionne que pendant les **heures creuses** facturées par EDF à **0,3 281 Francs par kWh**.

|                                                                                                    | BEP | CAP |               |
|----------------------------------------------------------------------------------------------------|-----|-----|---------------|
| On demande de :                                                                                    |     |     |               |
| 1. Calculer sa puissance électrique absorbée en kW : $P = U.I$                                     | /1  | /1  |               |
| P = 220x20                                                                                         |     |     |               |
| P = 4,4  kW                                                                                        |     |     |               |
|                                                                                                    | /1  | /1  |               |
| 2. <u>Calculer sa résistance électrique :</u> $U = R.I$                                            |     |     |               |
| R=UA                                                                                               |     |     |               |
| R = 220120                                                                                         |     |     |               |
| $R = 11\Omega$                                                                                     |     |     |               |
| 3. Calculer l'énergie électrique dissipée en chaleur pendant 24h de fonctionnement                 | 1/1 | /1  |               |
| a) En kWh:                                                                                         | '1  | /1  |               |
| $W = R.I^2.t$                                                                                      |     |     | l             |
| $\mathbf{w} = \mathbf{P}.\mathbf{t}$                                                               |     |     | l             |
| W = 4,4x24                                                                                         |     |     |               |
| W = 105,6  kWh                                                                                     |     |     |               |
| b) En Mj (Méga joule) :                                                                            | /1  | XX  |               |
| $W = 105,6 \times 10^3 \times 3600$                                                                |     |     |               |
| W = 380  Mj                                                                                        |     |     |               |
| 6 Calcular la maior de mariant d'une conseguention companyant à 94h de chareffe et                 |     |     |               |
| 4. Calculer le prix de revient d'une consommation correspondant à 24h de chauffe et heure creuse : | /1  | /1  |               |
| Prix = $0.3281 \times 105.6$                                                                       |     |     |               |
| $\mathbf{Prix} = \mathbf{34,65F}$                                                                  |     |     |               |
|                                                                                                    |     |     | $\frac{1}{2}$ |
| TOTAL.                                                                                             | /10 |     |               |
|                                                                                                    | BEP | CAP | _             |

| ACADEMI    | E DE CAEN | - | BEP et CAPELECTROTECHNIQUE                                      | - | Session 1999 |
|------------|-----------|---|-----------------------------------------------------------------|---|--------------|
| Sujet n° 7 | EP3       |   | Expérimentation Scientifique et Technique Application Numérique |   | Feuille 2/2  |
|            |           |   | CORRIGE                                                         |   |              |

## , Partie A : Moteur asynchrone triphasé.

#### On donne:

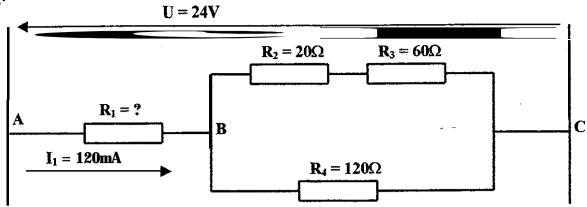
Le moteur asynchrone d'une machine outil est démonté. On l'essaie sur un banc de mesures avec une tension triphasée de 380V, 50 Hz. Les mesures ont donné les résultats suivants :

1 = 7,12A; Pa = 3,75 kW; Tu = 20,89 Nm; n' = 1440 tr.mn<sup>-1</sup>

### `AP BEP On demande de : 1. Calculer son facteur de puissance : Pa = $U.I\sqrt{3}.\cos\varphi$ /1 /1 $\cos \varphi = \text{Pa}/(\text{U}.\text{I}\sqrt{3})$ $\cos \varphi = 3.750/(380 \times 7,12 \times \sqrt{3})$ $\cos \varphi = 48$ 2. Calculer sa puissance utile en kW: /1,5 /1,5 $Pu = Tu.\Omega$ $\Omega = 2\pi n$ $\Rightarrow$ Pu = Tu.2 $\pi$ n $Pu = 20.89 \times 2\pi \times 1440/60$ Pu=3 150W $P_u = 3,15 \text{ kW}$ 3. Calculer son rendement en %: $\eta = Pu/Pa$ $\eta = 3 \ 150/3 \ 750$ $\eta = 84\%$ 4. Donner la fréquence de synchronisme : / 0,5 /1 $n = 1500 \, \text{tr.mn}^{-1}$

### 5. Calculer son glissement:

$$g = (n-n^2)/n$$
  
 $g = (1 500-1 440)/1 500$   
 $g = 4\%$ 


/1,5

XX

| ACADEMI    | E DE CAEN | - | BEP et CAPELECTROTECHNIQUE                                  | = | Session 1999 |
|------------|-----------|---|-------------------------------------------------------------|---|--------------|
| Sujet nº 8 | EP3       |   | Expérimentation centifique l'echnique Application Numérique |   | Feuille 1/2  |
|            |           |   | CO'RRIGE                                                    |   |              |

# , Partie B : Résistance équivalente.

On donne:





1. Calculer la résistance totale du circuit  $R_{et}$ :

$$R_{et} = U/I_1$$

$$R_{et} = 24/0,12$$

$$R_{et} = 200\Omega$$

2. Calculer la valeur de la résistance  $R_1$  pour avoir  $I_1 = 120$ mA:

$$R_{2.3} = R_2 + R_3$$
  $R_{2.3.4} = R_{2.3} R_4 / (R_{2.3} + R_4)$   $R_{2.3} = 20 + 60$   $R_{2.3.4} = 80 \times 120 / (80 + 120)$   $R_{2.3.4} = 48 \Omega$   $R_{1} = R_{et} - R_{2.3.4}$   $R_{1} = 200 - 48$ 

$$R_1 = 152\Omega$$

NB : Le candidat est libre d'utiliser d'autres procédures que l'examinateur analysera et qu'il pourra juger bonnes.

TOTAL

| / <u>8</u><br>_P |
|------------------|
|                  |

3EP

1,5

/3

AP

1.5

/2

| ACADEMI    | E. DE CAEN | - | BEP et CAPELECTROTECHNIQUE                                      | • | Session 1999 |
|------------|------------|---|-----------------------------------------------------------------|---|--------------|
| Sujet n° 8 | EP3        |   | Expérimentation Scientifiqueet Technique  Application Numérique |   | Feuille 2/2  |
| CORRIGE    |            |   |                                                                 |   |              |

# ' Partie A: Transformateur monophasé.

### On donne:

La plaque signalétique d'un transformateur indique 240 VA et 240V/12V.

On supposera que ce transformateur est parfait.

La plaque signalétique de la charge placée au Secondaire indique un facteur de puissance  $\cos \varphi = 0.9$ , une tension d'alimentation de U = 12V et un courant consommé de I = 18,

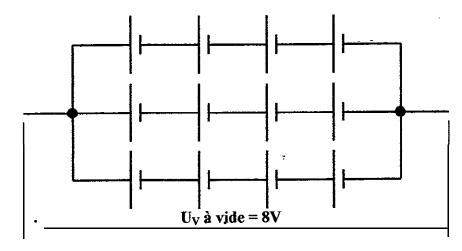
| cos ψ = 0,2, une tension a annientation de 0 = 12.7 et un courant consonnie de                  | 10, | BEP        | CAP |
|-------------------------------------------------------------------------------------------------|-----|------------|-----|
| On demande de :                                                                                 |     |            |     |
| 1. Calculer le courant nominal du Primaire et du Secondaire I <sub>1</sub> et I <sub>2</sub> :  |     |            |     |
| $S = U_1.I_1 \qquad \Rightarrow I_1 = S/U_1$                                                    |     | /1         | /1  |
| $I_1 = 240/240A$                                                                                |     |            |     |
| $I_i = 1A$                                                                                      |     |            |     |
| $s = U_2.I_2 \implies I_2 = S/U_2$                                                              |     |            |     |
| $I_2 = 240/12$                                                                                  |     |            |     |
| $\mathbf{I_2} = 20\mathbf{A}$                                                                   |     |            |     |
| 2. Calculer le rapport de transformation :                                                      |     | /1         | /1  |
| $\mathbf{m} = \mathbf{U}_2/\mathbf{U}_1$                                                        |     |            |     |
| m = 12/240                                                                                      |     |            |     |
| $\mathbf{m} = 0.05$                                                                             |     |            |     |
| 3. Calculer le courant Primaire obtenu en branchant la charge au Secondaire :                   |     | 14         | 14  |
| $\mathbf{m} = \mathbf{I_1}/\mathbf{I_2} \Longrightarrow \mathbf{I_1} = \mathbf{m}.\mathbf{I_2}$ |     | /1         | /1  |
| $I_1 = 0.05 \times 18$                                                                          |     |            |     |
| $\mathbf{I_1} = \mathbf{0.9A}$                                                                  |     |            |     |
| 4. Calculer la puissance active au Secondaire :                                                 |     | /1         | /1  |
| $\mathbf{P_2} = \mathbf{U_2}.\mathbf{I_2}.\mathbf{cos}\mathbf{\varphi}_2$                       |     | 7 1        | ′1  |
| $P_2 = 12 \times 18 \times 0.9$                                                                 |     |            |     |
| $\mathbf{P_2} = \mathbf{194,4W}$                                                                |     |            |     |
| 5. Calculer la puissance réactive au Secondaire :                                               |     | <b>I</b> 1 | XX  |
| $Q2 = P_2.tg\phi$                                                                               |     |            |     |
| $\cos \varphi = 0.9 \Longrightarrow tg \varphi = 0.484$                                         |     |            |     |
| $Q_2 = 194,4 \times 0,484$                                                                      |     |            |     |
| $\mathbf{Q_2} = 94,1 \ \mathbf{VAR}$                                                            |     |            |     |
|                                                                                                 |     | BEP        | CAP |
|                                                                                                 |     | E          | LAP |

| ACADEMI    | E DE CAEN | - BEP et CAP ELECTROTECHNIQUE                                   | - Session 1999 |
|------------|-----------|-----------------------------------------------------------------|----------------|
| Sujet n° 9 | EP3       | Expérimentation Scientifique et Technique Application Numérique | Feuille 1/2    |
|            |           | CORRIGE                                                         |                |

# Partie B : Résonance en triphasé.

# On donne:

On dispose de trois bobines identiques de résistance interne  $10\Omega$  et d'inductance 0,6H. On les couple-en étoile sur un réseau triphasé 220V/380V, 50~Hz.


| couple-en etone sur un reseau triphase 220 v 1300 v 3 50 H2.                                                  | BEP | CAP |
|---------------------------------------------------------------------------------------------------------------|-----|-----|
| On demande de :                                                                                               |     |     |
| 1. Indiquer la valeur de la tension aux bornes de chaque bobine :                                             |     |     |
| • Tension simple.                                                                                             | /1  | /1  |
| • $V = 220V$ .                                                                                                |     |     |
| 2. Calculer l'impédance de chaaue bobine :                                                                    | , a | 11  |
| $Z = \sqrt{R^2 + L^2 \omega^2}$                                                                               | /1  | /1. |
| $Z = \sqrt{R^2 + L^2 \omega^2}$ $\omega = 2\pi f = 2 \times \pi \times 50 = 314$                              |     |     |
| $\Rightarrow Z = \overline{10^2 + 0.6^2 \times 314^2}$                                                        |     |     |
| $Z = 188,7\Omega$                                                                                             |     |     |
| 3. Calculer le courant dans chaaue bobine :                                                                   | /1  | /1  |
| $I = \frac{\overline{U}}{Z} = \frac{220}{188.7}$                                                              | ٠.  |     |
| 1 = 1,17A                                                                                                     |     |     |
| 4. Calculer le facteur de puissance de chaaue bobine :                                                        | /1  | /11 |
| $\cos \varphi = \frac{R}{Z} = \frac{10}{188,7}$                                                               |     |     |
| $\cos \varphi = 0.053$                                                                                        |     |     |
| 5. Calculer la capacité des condensateurs à mettre en parallèle sur chaque bobine pour obtenir la résonance : | /1  | XX  |
| $L.C.\omega^2 = 1 \Longrightarrow c = \frac{1}{L.\omega^2}$                                                   |     |     |
| $L.C.\omega^{2} = 1 \Rightarrow c = \frac{1}{L.\omega^{2}}$ $C = \frac{1}{0.6 \times 314^{2}}$                |     |     |
| $C = 16.9 \mu F$                                                                                              |     |     |
|                                                                                                               |     |     |
| TOTAL :                                                                                                       | /10 | /Ω  |
| IUIAL:                                                                                                        | BEP | (AP |

| ACADEMI    | E DE CAEN | <del>.</del> | BEP et CAP ELECTROTECHNIQUE                                 | - | Session 1999 |
|------------|-----------|--------------|-------------------------------------------------------------|---|--------------|
| Sujet nº 9 | EP3       |              | Expérimentation Scientify de Chilique Application Numérique |   | Feuille 2/2  |
| CORRIGE    |           |              |                                                             |   |              |

#### Partie A: Batterie d'accumulateurs.

#### On donne:

Une batterie d'accumulateurs identiques est constituée de **trois branches montées en parallèle.** Chaque branche comprend **quatre accumulateurs en série.** Sa tension mesurée à vide **Uv = 8V**. Quand la batterie débite **5A**, on mesure une tension de **7V** à ses bornes.



#### On demande de :

- 1. Donner la force électromotrice E de la batterie : E = Uv = 8V
- 2. Calculer la force électromotrice e d'un élément : e = El4 = 8/4

$$e = 2V$$

3. Calculer la résistance interne R de l'ensemble de la batterie :

$$U = E - R.I \Rightarrow R.I = E - U$$

$$R = \frac{E - U}{1} = \frac{8 - 7}{5}$$

$$R = 0.2\Omega$$

α<sub>o</sub> Calculer la résistance interne Rb d'une branche si R = 0.2Ω:

 $Rb = R \times 3$ , car les 3 branches sont identiques

$$Rb = 0.2x3$$

$$Rb = 0.6\Omega$$

5. <u>Calculer sa capacité nécessaire pour pouvoir fonctionner pendant 8h</u>:

$$Q = I.t = 5 \times 8$$

$$Q = 40 Ab$$

| ./1 | /1    |
|-----|-------|
| il  | /1    |
| /1  | 11    |
| /1  | /1    |
| /1  | XX    |
| BEP | C A P |

CAP

| ACADEMI     | ACADEMIE DE CAEN - BEP et CM ELECTROTECHNIQUE - Session 1999                                |  |  |  | Session 1999 |
|-------------|---------------------------------------------------------------------------------------------|--|--|--|--------------|
| Sujet n° 10 | Sujet n° 10 EP3 Expérimentation Scientifique et Technique Application Numérique Feuille 1/2 |  |  |  |              |
| CORRIGE     |                                                                                             |  |  |  |              |

# Partie B : Circuit R.L.C. série.

# On donne:

Une bobine de résistance  $\mathbf{R} = 52\Omega$  et d'inductance  $\mathbf{L} = 0.7\mathbf{H}$  est montée en série avec un condensateur de capacité  $\mathbf{C} = 10 \,\mu\text{F}$ . L'ensemble est monté sur le secteur 220V, 50 Hz.

| , , , , , , , , , , , , , , , , , , ,                                                                                                | BEP | AP         |
|--------------------------------------------------------------------------------------------------------------------------------------|-----|------------|
| On demande de :                                                                                                                      |     |            |
| 1. Calculer la réactance de la bobine XL : $X_L = L.\omega$ $\omega = 2\pi f$                                                        | /1  | /1         |
| •                                                                                                                                    |     |            |
| $\Rightarrow X_L = 0,7 \times 2 \times 3,14 \times 50$                                                                               |     |            |
| $XL = 220\Omega$                                                                                                                     |     |            |
| 2. Calculer la réactance du condensateur Xc: $Xc = \frac{1}{C.\omega} = \frac{1}{10 \times 10^{-6} \times 314} = \frac{10^{5}}{314}$ | /1  | /1         |
| $\mathbf{X}\mathbf{c} = 318\mathbf{\Omega}$                                                                                          |     |            |
| 3. Calculer la réactance totale Xt du circuit :                                                                                      |     |            |
| $\mathbf{xt} =  \mathbf{X}_{L} - \mathbf{Xc} $                                                                                       | II  | /1         |
| Xt =  220 - 318                                                                                                                      |     |            |
| $Xt = 98\Omega$                                                                                                                      |     |            |
| $4$ . Calculer l'impédance du circuit si $Xt = 98\Omega$ :                                                                           | L.  | /1         |
| $Z = \sqrt{R^2 + Xt^2}$                                                                                                              | 1.  | /1         |
| $Z = \sqrt{52^2 + 98^2}$                                                                                                             |     |            |
| $z=111\Omega$                                                                                                                        |     |            |
| 5. Calculer la fréquence de résonance du circuit : $L.C.\omega^2 = 1$                                                                | £   | XX         |
| $\omega = \sqrt{\frac{1}{L.C}} \text{ou} \frac{1}{\sqrt{L.C}} = \frac{1}{\sqrt{0.7 \times 10 \times 10^{-6}}} = 378 \text{ rd/s}$    |     |            |
| $\omega = 2\pi f \Longrightarrow f = \omega/(2\pi) = 378/(2x3,14)$                                                                   |     |            |
| f = 60,2 Hz                                                                                                                          |     |            |
|                                                                                                                                      |     |            |
|                                                                                                                                      | _   |            |
| TOTAL:                                                                                                                               | /1  | <b>/</b> ₹ |

| ACADEMI     | E DE CAEN | - | BEP et CAP ELECTROTECHNIQUE                                     | • | Session 1999 |
|-------------|-----------|---|-----------------------------------------------------------------|---|--------------|
| Sujet nº 10 | EP3       |   | Expérimentation Scientifique El Technique Application Numérique |   | Feuille 2/2  |
| CORRIGE     |           |   |                                                                 |   |              |

### Partie A: Chute de tension en ligne.

#### On donne:

Une ligne d'alimentation électrique (2 conducteurs) mesure 200m de long. Chaque conducteur est en cuivre de résistivité  $\rho = 1.6 \times 10^{-8} \Omega m$  et a une section de 2.5 mm<sup>2</sup>.

BEP

12

/1

/1

/1

/1

Il

XX

CAP

/2

La tension d'alimentation au départ est Ue = 240V, le courant moyen débité est de 5A.

### On demande de :

1. Calculer la résistance R de la ligne :

$$R = \rho \frac{1}{S}$$

$$R = 1.6 \times 10^{-8} \times \frac{200 \times 2}{2.5 \times 10^{-6}}$$

$$R = 2.56\Omega$$

2. Calculer la chute en ligne u :

$$u = R.I$$
 $u = 2,56x5$ 
 $u = 12,8V$ 

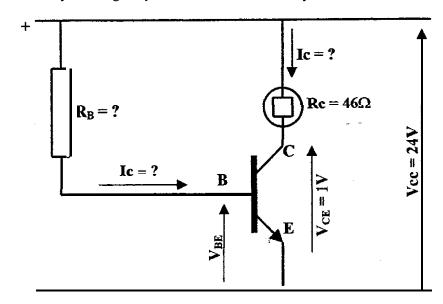
3. Calculer la tension en bout de ligne Us :

$$Us = Ue - u$$
 $Us = 240 - 12,8$ 
 $us = 227V$ 

4. Calculer la chute de tension relative en ligne  $\sigma$  (taux de chute en %):

$$\sigma = \frac{u \times 100}{Ue}$$

$$\sigma = \frac{12,8 \times 100}{240}$$


$$\sigma = 5,33\%$$

| ACADEMI     | E DE CAEN | - | BEP et CAP ELECTROTECHNIQUE                                | - | Session 1999 |
|-------------|-----------|---|------------------------------------------------------------|---|--------------|
| Sujet nº 11 | EP3       |   | Expérimentatiscientific la lechnique Application Numérique |   | Feuille 1/2  |
| CORRIGE     |           |   |                                                            |   |              |

# CORRIGE

### Partie B: Transistor N.P.N.

On donne: Un transistor N.P.N. ayant un gain  $\beta = 50$  commande un voyant Rc.



#### On demande de :

1. Calculer la valeur du courant de collecteur Ic :

$$Vcc = Rc.Ic + V_{CE}$$

$$Ic = \frac{Vcc - V_{CE}}{RC} - \frac{24-1}{46}$$

$$Ic = 0.5A$$

2. Calculer le courant de base  $I_B$  en admettant que  $I_C = 0.5A$ :

$$\beta = \frac{Ic}{I_B} \Rightarrow I_B = \frac{Ic}{\beta} = \frac{0.5}{50}$$

$$I_B = 10 \text{ mA}$$

3. Calculer  $R_B$  en  $k\Omega$  pour que le montage fonctionne correctement en admettant que  $I_B = 10 \text{ mA}$  et que  $V_{BE} = 0.6V$ :

$$vcc = R_B.I_B + V_{BE} \Rightarrow R_B = \frac{Vcc - V_{BE}}{I_B} = \frac{24 - 0.6}{0.01}$$

$$R_B = 2.34 \text{ k}\Omega$$

4. Calculer la puissance dissipée par le voyant en admettant que Ic = 0.5A:  $Pj = Rc \times Ic^2 = 46 \times 0.5^2$ 

$$Pj = Rc \times Ic^2 = 46 \times 0.5^2$$

$$Pj = 11,5W$$

TOTAL  $\left| \begin{array}{c} /10 \\ \hline \text{BEP} \end{array} \right| \stackrel{/2}{\subset} |$ 

| /1  | XX  |  |
|-----|-----|--|
| _/1 | _/1 |  |
| /10 | /5  |  |

3EP

/2

/1

12

| ACADEMI     | E DE CAEN | - | BEP et CAP ELECTROTECHNIQUE                                      | - | Session 1999 |
|-------------|-----------|---|------------------------------------------------------------------|---|--------------|
| Sujet n° 11 | EP3       |   | Expérimentation Scientifique et Technique  Application Numériaue |   | Feuille 2/2  |
| CORRIGE     |           |   |                                                                  |   |              |