ACADEMIE	Sessi	on Juin 1999		
SPECIALITE: GROUPE D		Coef:		2 H 00
EPREUVE :	Mathématiques - Sciences phys	Fei	uille : 1/4	

BEP + BEP/CAP associés Mathématiques-Sciences physiques Groupe D

Diplômes concernés:

INTITULE

BEP Maintenance des systèmes mécaniques et automatisés

BEP Microtechniques

CAP Micromécanique

BEP Productique mécanique (usinage)

BEP Structures métalliques

CAP Métallerie

CAP Construction d'ensembles chaudronnés

BEP Carrosserie

CAP Construction

CAP Réparation

BEP Mise en oeuvre des matériaux

CAP Composites

CAP Poudres et granulés

BEP Industrie chimie & traitement des eaux

CAP Agent de la qualité de l'eau

ACADEMIE	Sess	ion Juin 1999		
SPECIALITE :	GROUPE D	Coef ;	Durée	2 H 00
EPREUVE :	Mathématiques - Sciences physiques		Fe	uille : 2/4

La clarté des raisonnements, la qualité de la rédaction et la précision des résultats interviendront dans l'appréciation des copies. L'usage des instruments de calcul est autorisé

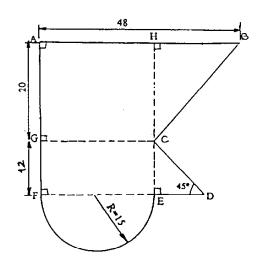
Matériel : une feuille de papier millimétré.

MATHEMATIQUES

EXERCICE 1

Soit le tableau de valeurs suivant :

	x	- 3	- 2	- 1	0	l	2	3
L	у	- 1	0	1	2	3	4	5


- 1. Est-ce un tableau de proportionnalité ? Justifier votre réponse.
- 2. Placer et joindre les points de coordonnées (x; y) dans un repère orthonormé d'unité graphique : 1 cm.
- 3. Déterminer l'équation de la droite obtenue.
- 4. Soit la fonction f définie par $f(x) = -x^2 + 4$.
 - a) Reproduire et compléter le tableau suivant :

х	- 3	- 2	- I	0	1	2	3
f(x)						-	

- b) Dans le même repère, représenter graphiquement la fonction f.
- 5. Déterminer graphiquement les coordonnées des points d'intersection des deux courbes.

EXERCICE 2

Une pièce métallique est représentée par la figure ci-dessous. (Les cotes sont en cm).

, per	
BEP	САР
0,5	1
0,5	1
	1,5
1	
i	
1	2
•	
1	
0,5	

ACADEMIE DE POITIERS		Sessio	n Juin 1999	
SPECIALITE :	GROUPE D	Coef:	Durée	2 H 00
EPREUVE : Mathématiques - Sciences physiques				Feuille : 3/4

	BEP	CAP
1. Calculer les longueurs BC et CD (au dixième près).	1	2
	0,5	1
2. Déterminer la mesure de l'angle HBC (au degré près).		
3. Calculer l'aire de la pièce au mm² près.	1	1,5
4. Sachant que cette pièce est réalisée en tôle de 3 mm d'épaisseur et que la masse volumique du fer est 7800 kg/m³, calculer sa masse (au gramme près).	0,5	1
EXERCICE 3	ĺ	
Lors d'un contrôle de vitesse sur la RN 11 limitée à 90 km/h on a obtenu les résultats suivants : $(x_i \text{ représentera la valeur de chaque classe : } n_i \text{ son effectif})$		
1. Reproduire et compléter le tableau :	1,5	
Vitesse (km/h) Effectif Effectif cumulé Valeur centrale $n_i x_i$		

1

0,5

0,5

1

Vitesse (km/h)	Effectif n _i	Effectif cumulé croissant	Valeur centrale	$\mathbf{n_i} \mathbf{x_i}$
[0;80[8		·	
[80;90[35	43		
[90;100[82			
[100;110[63			
[110;140[12			

- 2. Combien de véhicules roulaient à moins de 100 km/h et à plus de 90 km/h?
- 3. Calculer la vitesse moyenne des véhicules contrôlés sur la RN 11.

SCIENCES PHYSIQUES

CHIMIE

Pour souder des rails de chemin de fer, on fait réagir de l'oxyde de fer avec de l'aluminium avec obtention de fer et d'oxyde d'aluminium suivant la réaction :

$$Fe_2O_3 + \dots A\ell \longrightarrow A\ell_2O_3 + \dots Fe$$

1. Calculer la masse molaire de l'oxyde de fer.

ACADEMIE	Sessi	on Juin 1			
SPECIALITE:	GROUPE D	Coef: Durée		2 H 00	
EPREUVE :	Mathématiques - Sciences phys	Mathématiques - Sciences physiques			

BEP

0;5

0.5

2

0,5

0,5

1

1

0,5

1

1

1

1,5

1,5

1

1

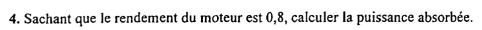
1

CAP

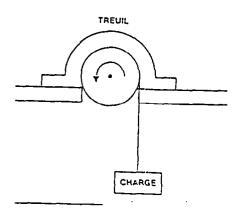
ELECTRICITE

Un radiateur électrique de puissance 3000 W est branché sous une tension de 230 V.

- 1. Calculer l'intensité du courant qui le traverse.
- 2. Calculer sa résistance.
- 3. Calculer l'énergie consommée s'il fonctionne pendant 12 h 30 min.
- 4. Calculer le prix de revient sachant qu'un KWh est facturé 0,78 F.


$$P = U.I$$
; $U = R.I$; $W = P.t$

MECANIQUE


On soulève une charge de 10 kg à l'aide d'un treuil.

- 1. Calculer l'intensité du poids de cette charge (g = 9,81 N/kg)
- 2. La charge est soulevée sur une hauteur de 2,5 m.
 Calculer le travail effectué.
- 3. Le travail effectué correspond à l'énergie utile d'un moteur.

Calculer la puissance utile du moteur si le le déplacement s'effectue en 4 secondes.

On donne:
$$W = F \times \ell$$
 ; $W = P \times t$; $\eta = \frac{Pu}{Pa}$.

Formulaire de Mathématiques BEP Industriel & CAP Associés

Idenutés remarquables

 $(a+b)^2 = a^2 + 2ab + b^2$;

$$(a-b)^2 = a^2 - 2ab + b^2$$
;

$$(a+b)(a-b) = a^2 - b^2$$
.

Puissances d'un nombre

Racines carrées

$$\sqrt{ab} - \sqrt{a}\sqrt{b}$$
; $\sqrt{\frac{a}{b}} - \frac{\sqrt{a}}{\sqrt{b}}$.

Suites arithmétiques

Terme de rang 1 : u; raison r.

Terme de rang n:

$$u_n = u_{n+1} + r$$
;

$$u_n = u_1 + (n-1)r.$$

Suites géométriques

Terme de rang 1 : u; raison q.

Terme de rang n:

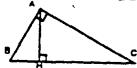
$$u_n = u_{n-1}q$$
;

$$u_{i} \approx u_{i}q^{-1}$$

<u>Statistiques</u>

Movenne \bar{x} :

$$\vec{x} = \frac{n_1 x_1 + n_2 x_2 + \dots + n_p x_p}{N};$$


Ecan type σ :

$$\sigma^{2} = \frac{n_{1}(X_{1} - \overline{X})^{2} + n_{2}(X_{2} - \overline{X})^{2} + ... + n_{p}(X_{p} - \overline{X})^{2}}{N}$$

$$= \frac{n_{1}X_{1}^{2} + n_{2}X_{2}^{2} + ... + n_{p}X_{p}^{2}}{N} - \overline{X}^{2}.$$

Relations métriques dans le triangle rectangle

$$AB^2 + AC^2 = BC^2$$

 $AH.BC = AB.AC$

$$\sin \hat{B} = \frac{AC}{BC}; \cos \hat{B} = \frac{AB}{BC}; \tan \hat{B} = \frac{AC}{AB}.$$

Enoncé de Thalès (relatif au triangle)

SI (BC)//(B'C').

alors
$$\frac{AB}{AB'} = \frac{AC}{AC'}$$

Aires dans le plan

Triangle: Bh.

Parallélogramme: Bh.

Trapèze: $\frac{1}{2}(B+b)h$.

Disque: πR²,

Secteur circulaire angle α en degré : $\frac{\alpha}{360}$ x \mathbb{R}^3 .

Aires et volumes dans l'espace

Cylindre de révolution ou Prisme droit

d'aire de base B et de hauteur h:

Volume: Bh

Sphère de ravon R:

Aire: 4\tauR2

Volume: ±πR3.

Cône de révolution ou Pyramide

d'aire de base B et de hauteur h: Volume: Bh.

Position relative de deux droites

Les droites d'équations

$$y=ax+b$$
 et $y=a'x+b'$

parallèles si et seulement si a = a';

- orthogonales si et seulement si aa' = -1.

Calcul vectoriel dans le plan

$$\vec{\nabla}_{y}^{x}: \vec{\nabla}_{y'}^{x'}: \vec{\nabla} + \vec{\nabla}_{y+y'}^{x+x'}; \lambda \vec{\nabla}_{\lambda y}^{\lambda x}.$$

$$||\vec{v}|| - \sqrt{x^2 + y^2}$$

<u>Trigonométrie</u>

$$\cos^2 x + \sin^2 x = 1;$$

$$\tan x = \frac{\sin x}{\cos x}.$$

Résolution de triangle

$$\frac{a}{\sin \hat{A}} = \frac{b}{\sin \hat{R}} = \frac{c}{\sin \hat{C}} = 2R;$$

R: rayon du cercle circonscrit.

$$a^2 = b^2 + c^2 - 2bc \cos \hat{A}$$